6 research outputs found

    Pre-pulses: Signature of a trigger process in short (less than 60 secs) solar hard x ray flares

    Get PDF
    The continuing study of short hard x ray events (less than 60 sec duration) from the Solar Maximum Mission (SMM) Hard X ray Burst Spectrometer (HXRBS) instrument has revealed a unique feature. A well-separated distinctly identifiable, narrow (2 to 6 sec wide) pulse occurs prior to the start of the longer-flare lasting emission activity. Light curves are presented for eight events showing this feature. The pre-pulses show symmetrical rise and fall times. Spectral evolution of the pre-pulses are presented and their evolution compared to that of the main event spectra. It is argued that this feature be the elementary flare burst (de Jager, 1978). These pre-pulses could be a signature of the magnetic reconnection phenomenon discussed by Sturrock et al., (1984)

    A high-speed digital camera system for the observation of rapid H-alpha fluctuations in solar flares

    Get PDF
    Researchers developed a prototype digital camera system for obtaining H-alpha images of solar flares with 0.1 s time resolution. They intend to operate this system in conjunction with SMM's Hard X Ray Burst Spectrometer, with x ray instruments which will be available on the Gamma Ray Observatory and eventually with the Gamma Ray Imaging Device (GRID), and with the High Resolution Gamma-Ray and Hard X Ray Spectrometer (HIREGS) which are being developed for the Max '91 program. The digital camera has recently proven to be successful as a one camera system operating in the blue wing of H-alpha during the first Max '91 campaign. Construction and procurement of a second and possibly a third camera for simultaneous observations at other wavelengths are underway as are analyses of the campaign data

    High-spatial resolution and high-spectral resolution detector for use in the measurement of solar flare hard X-rays

    Get PDF
    In the areas of high spatial resolution, the evaluation of a hard X-ray detector with 65 micron spatial resolution for operation in the energy range from 30 to 400 keV is proposed. The basic detector is a thick large-area scintillator faceplate, composed of a matrix of high-density scintillating glass fibers, attached to a proximity type image intensifier tube with a resistive-anode digital readout system. Such a detector, combined with a coded-aperture mask, would be ideal for use as a modest-sized hard X-ray imaging instrument up to X-ray energies as high as several hundred keV. As an integral part of this study it was also proposed that several techniques be critically evaluated for X-ray image coding which could be used with this detector. In the area of high spectral resolution, it is proposed to evaluate two different types of detectors for use as X-ray spectrometers for solar flares: planar silicon detectors and high-purity germanium detectors (HPGe). Instruments utilizing these high-spatial-resolution detectors for hard X-ray imaging measurements from 30 to 400 keV and high-spectral-resolution detectors for measurements over a similar energy range would be ideally suited for making crucial solar flare observations during the upcoming maximum in the solar cycle

    Development of a high-speed H-alpha camera system for the observation of rapid fluctuations in solar flares

    Get PDF
    A solid-state digital camera was developed for obtaining H alpha images of solar flares with 0.1 s time resolution. Beginning in the summer of 1988, this system will be operated in conjunction with SMM's hard X-ray burst spectrometer (HXRBS). Important electron time-of-flight effects that are crucial for determining the flare energy release processes should be detectable with these combined H alpha and hard X-ray observations. Charge-injection device (CID) cameras provide 128 x 128 pixel images simultaneously in the H alpha blue wing, line center, and red wing, or other wavelength of interest. The data recording system employs a microprocessor-controlled, electronic interface between each camera and a digital processor board that encodes the data into a serial bitstream for continuous recording by a standard video cassette recorder. Only a small fraction of the data will be permanently archived through utilization of a direct memory access interface onto a VAX-750 computer. In addition to correlations with hard X-ray data, observations from the high speed H alpha camera will also be correlated and optical and microwave data and data from future MAX 1991 campaigns. Whether the recorded optical flashes are simultaneous with X-ray peaks to within 0.1 s, are delayed by tenths of seconds or are even undetectable, the results will have implications on the validity of both thermal and nonthermal models of hard X-ray production

    Rapid Fluctuations in Solar Flares

    Get PDF
    Topics addressed include: X-rays; radio and microwaves; thermal response; plasma physics; and future plans

    The Fourier Imaging X-ray Spectrometer (FIXS) for the Argentinian, Scout-launched satelite de Aplicaciones Cienficas-1 (SAC-1)

    Get PDF
    The Fourier Imaging X-ray Spectrometer (FIXS) is one of four instruments on SAC-1, the Argentinian satellite being proposed for launch by NASA on a Scout rocket in 1992/3. The FIXS is designed to provide solar flare images at X-ray energies between 5 and 35 keV. Observations will be made on arcsecond size scales and subsecond time scales of the processes that modify the electron spectrum and the thermal distribution in flaring magnetic structures
    corecore