46 research outputs found

    Rapid preparation of giant unilamellar vesicles.

    Full text link

    Generation of phospholipid vesicle-nanotube networks and transport of molecules therein

    Get PDF
    We describe micromanipulation and microinjection procedures for the fabrication of soft-matter networks consisting of lipid bilayer nanotubes and surface-immobilized vesicles. These biomimetic membrane systems feature unique structural flexibility and expandability and, unlike solid-state microfluidic and nanofluidic devices prepared by top-down fabrication, they allow network designs with dynamic control over individual containers and interconnecting conduits. The fabrication is founded on self-assembly of phospholipid molecules, followed by micromanipulation operations, such as membrane electroporation and microinjection, to effect shape transformations of the membrane and create a series of interconnected compartments. Size and geometry of the network can be chosen according to its desired function. Membrane composition is controlled mainly during the self-assembly step, whereas the interior contents of individual containers is defined through a sequence of microneedle injections. Networks cannot be fabricated with other currently available methods of giant unilamellar vesicle preparation (large unilamellar vesicle fusion or electroformation). Described in detail are also three transport modes, which are suitable for moving water-soluble or membrane-bound small molecules, polymers, DNA, proteins and nanoparticles within the networks. The fabrication protocol requires ∼90 min, provided all necessary preparations are made in advance. The transport studies require an additional 60-120 min, depending on the transport regime. © 2011 Nature America, Inc. All rights reserved

    Synaptic NMDA receptor activity is coupled to the transcriptional control of the glutathione system

    Get PDF
    How the brain’s antioxidant defenses adapt to changing demand is incompletely understood. Here we show that synaptic activity is coupled, via the NMDA receptor (NMDAR), to control of the glutathione antioxidant system. This tunes antioxidant capacity to reflect the elevated needs of an active neuron, guards against future increased demand and maintains redox balance in the brain. This control is mediated via a programme of gene expression changes that boosts the synthesis, recycling and utilization of glutathione, facilitating ROS detoxification and preventing <i>Puma</i>-dependent neuronal apoptosis. Of particular importance to the developing brain is the direct NMDAR-dependent transcriptional control of glutathione biosynthesis, disruption of which can lead to degeneration. Notably, these activity-dependent cell-autonomous mechanisms were found to cooperate with non-cell-autonomous Nrf2-driven support from astrocytes to maintain neuronal GSH levels in the face of oxidative insults. Thus, developmental NMDAR hypofunction and glutathione system deficits, separately implicated in several neurodevelopmental disorders, are mechanistically linked

    Probing Structure and Function of Ion Channels Using Limited Proteolysis and Microfluidics

    No full text
    Even though gain, loss, or modulation of ion channel function is implicated in many diseases, both rare and common, the development of new pharmaceuticals targeting this class has been disappointing, where it has been a major problem to obtain correlated structural and functional information. Here, we present a microfluidic method in which the ion channel TRPV1, contained in proteoliposomes or in excised patches, was exposed to limited trypsin proteolysis. Cleaved-off peptides were identified by MS, and electrophysiological properties were recorded by patch clamp. Thus, the structure-function relationship was evaluated by correlating changes in function with removal of structural elements. Using this approach, we pinpointed regions of TRPV1 that affect channel properties upon their removal, causing changes in current amplitude, single-channel conductance, and EC50 value toward its agonist, capsaicin. We have provided a fast "shotgun" method for chemical truncation of a membrane protein, which allows for functional assessments of various peptide regions

    Marangoni transport in lipid nanotubes

    No full text
    We give a simple picture of transient and stationary transport in lipid nanotubes connecting two vesicles, when a difference of membrane tension is imposed at time t = 0, either by pressing one vesicle with a micro-fiber, or by adding a surplus of membrane lipid. The net result is a transport of membrane from the tense towards the floppy vesicle. In the early stage, the tube remains cylindrical, and the gradient of surface tension gives rise to two opposite flows of the internal liquid: a Marangoni flow towards the direction of high tension, and a Poiseuille flow (induced by Laplace pressures) in the opposite direction. At longer time, the tube reaches a stationary state, where curvature and Laplace pressure are balanced. Marangoni flows dominate for giant vesicles, where Laplace pressure is negligible
    corecore