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Synaptic NMDA receptor activity is coupled to the
transcriptional control of the glutathione system
Paul S. Baxter1, Karen F.S. Bell1, Philip Hasel1, Angela M. Kaindl2,3, Michael Fricker4, Derek Thomson1,

Sean P. Cregan5, Thomas H. Gillingwater1 & Giles E. Hardingham1

How the brain’s antioxidant defenses adapt to changing demand is incompletely understood.

Here we show that synaptic activity is coupled, via the NMDA receptor (NMDAR), to control

of the glutathione antioxidant system. This tunes antioxidant capacity to reflect the elevated

needs of an active neuron, guards against future increased demand and maintains redox

balance in the brain. This control is mediated via a programme of gene expression changes

that boosts the synthesis, recycling and utilization of glutathione, facilitating ROS

detoxification and preventing Puma-dependent neuronal apoptosis. Of particular importance

to the developing brain is the direct NMDAR-dependent transcriptional control of glutathione

biosynthesis, disruption of which can lead to degeneration. Notably, these activity-dependent

cell-autonomous mechanisms were found to cooperate with non-cell-autonomous

Nrf2-driven support from astrocytes to maintain neuronal GSH levels in the face of oxidative

insults. Thus, developmental NMDAR hypofunction and glutathione system deficits,

separately implicated in several neurodevelopmental disorders, are mechanistically linked.
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G
lutathione plays a central role in maintaining cellular
redox balance, both by reacting non-enzymatically with a
variety of reactive oxygen species (ROS), and by acting as

a cofactor in the glutathione peroxidase-catalysed reduction of
peroxides1,2. Deregulation of glutathione homeostasis has been
implicated in the aetiology of many brain disorders. Blood sample
and post-mortem studies have revealed deficits in GSH in
patients with a variety of neurodegenerative diseases3. Deficits in
the GSH system have also been implicated in the pathophysiology
of neuropsychiatric disorders, including schizophrenia (SZ),
bipolar disorder (BD) and autistic spectrum disorder (ASD).
Studies have reported that SZ, BD and ASD patients exhibit
reduced GSH levels and various markers of oxidative stress4–7.
Moreover, both genetic and pharmacological mouse models of
GSH deficiency induce behavioural and cognitive disturbances
relevant to these neurodevelopmental disorders5,8. Genetic
evidence points to a potential role for GSH system deficits,
particularly in SZ where disease-associated variants have been
found in the GCLC gene, which encodes the catalytic subunit of
glutamate–cysteine ligase (GCL) that catalyses the rate-
determining step in GSH biosynthesis9.

It is thought that one of the harmful consequences of GSH
system dysfunction in the brain is NMDA receptor (NMDAR)
hypoactivity4. GSH enhances NMDAR responses whereas its
depletion or oxidation, results in NMDAR hypofunction10,11.
NMDAR hypoactivity is particularly deleterious during forebrain
development, triggering vulnerability to neurodegeneration and
long-lasting behavioural disturbances. This is relevant to
neuropsychiatric disorders, since disruption to the glutamatergic
synapse, and NMDAR hypofunction in particular, has been
implicated in the aetiology of BD, ASD12,13 and, especially
SZ14,15. Moreover, the NMDAR-antagonistic properties of
ethanol may contribute to its acute neurotoxicity in models of
fetal alcohol syndrome16.

Despite the importance of GSH in brain (patho)physiology,
regulation of the GSH system is incompletely understood.
Leaving aside the feedback inhibition of GCL by GSH, the wider
issue of whether the capacity of the system to synthesize, utilize
and recycle GSH is subject to dynamic control in the brain is less
clear. Such regulatory mechanisms may be important for normal
redox homeostasis in the brain, for example, to tune the capacity
of the GSH system to the needs of the cell, or to guard against
future demand. Here we show that such a mechanism exists in
neurons. Highly active neurons have an increased demand for
GSH, which is met by a coordinated programme of transcrip-
tional changes that serve to enhance the capacity of the GSH
system, mediated by Ca2þ influx through the NMDAR. NMDAR
hypoactivity is found to promote GSH depletion and neuro-
degeneration in the developing brain due to a loss of NMDAR-
dependent transcriptional support of the GSH biosynthetic
capacity. Thus, developmental NMDAR hypofunction and
glutathione system deficits, separately implicated in several
neurodevelopmental disorders, are mechanistically linked.

Results
Neuronal GSH represses Puma-dependent apoptosis. To
investigate a link between synaptic activity and the GSH system,
we first confirmed the extent to which the GSH system was
central to antioxidant defenses in cortical neurons. We induced a
GSH deficit by treating neurons overnight with buthione sul-
foxamine (BSO), a selective inhibitor of GCL, the rate-deter-
mining enzyme of the GSH biosynthetic pathway. GSH levels
were measured in cell extracts using a commercial colorimetric
assay kit, and also the widely used cell-based probe mono-
chlorobimane (MCB), a normally non-fluorescent dye which

forms a (GST-catalysed) fluorescent adduct (GS-bimane) with
GSH that can be measured fluorometrically17,18 (see
Supplementary Fig. 1a–e, for validation of the MCB assay
conditions). BSO treatment resulted in a reduction in GSH levels
measured using either assay (Fig. 1a,b).

To determine the impact of GSH depletion on antioxidant
defenses, we measured the vulnerability of cortical neurons to
oxidative stress-induced apoptosis triggered by H2O2, a process
that involves transcriptional induction of the BH3-only domain
gene Puma19. We found that, while BSO-induced GSH depletion
had no influence on basal levels of neuronal apoptosis or Puma
expression, it strongly enhanced H2O2-induced Puma induction
and apoptosis (Fig. 1c–e). Puma induction and apoptosis were
observed in GSH-depleted neurons in response to low, ordinarily
non-toxic doses of H2O2. The effects of BSO were rescued by
treatment with a cell-permeable form of GSH (GSH-EE,
Supplementary Fig. 1f). The effects were also similar to, and
occluded by short interfering RNA-mediated Gclc knockdown
(Supplementary Fig. 1g,h), confirming that the effects of BSO
were due to decreasing GSH. We also confirmed that Puma-
deficient neurons were resistant to H2O2-induced apoptosis,
(Fig. 1f)19, and that Puma-deficient neurons had no GSH deficits
(Supplementary Fig. 1i), ruling out any confounding effects of
Puma deficiency on GSH antioxidant defenses. Collectively these
data confirm the importance of the GSH system for cortical
neuronal antioxidant defenses.

Active neurons have a greater requirement for GSH. Synaptic
activity is energetically and metabolically expensive20. Since ROS
generation is a by-product of ATP production via oxidative
phosphorylation, we hypothesized that the energy demands of
sustaining strong synaptic activity that lead to increased ROS
production cause elevated utilization of GSH. To investigate this,
synaptic activity was enhanced by disinhibiting the cortical
cultures by treatment with a GABAA receptor blocker, bicuculline
(BiC), which induces action potential bursting and concomitant
intracellular Ca2þ transients dependent on NMDAR activity
and augmented by release from internal stores21,22. Network
disinhibition via BiC treatment results in phasic, transient
elevation of glutamate, as illustrated by concurrent imaging of
BiC-induced Ca2þ levels in neurons expressing GCAMP2 plated
onto astrocytes expressing iGluSnFR23, an extracellular glutamate
sensor. GCaMP2 and iGluSnFR spikes were found to be
concurrent and transient (Supplementary Fig. 2b). In addition
to BiC, the weak Kþ channel blocker 4-aminopyridine (4-AP)
was added to enhance burst frequency21.

Neuronal electrical activity induces ROS production attributed
to both cytoplasmic and mitochondrial sources24,25. Consistent
with this, BiC/4-AP-induced synaptic activity enhanced rates of
production of ROS (Supplementary Fig. 2a). We next studied the
impact of synaptic activity on GSH levels and usage. Enhanced
BiC-induced synaptic activity did not affect steady-state GSH
levels even over a 24-h time period, measured either using an
MCB assay or a colorimetric extract-based assay (Fig. 2a,b).
However, these levels reflect the net effect of utilization, minus
the rates of GSH biosynthesis and recycling (reduction). To gain a
measure of GSH utilization, levels were measured under
conditions where GSH biosynthesis and reduction were acutely
inhibited, by BSO and 1,3-bis( chloroethyl)-1-nitrosourea
(BCNU), respectively (see Supplementary Fig. 2c for a protocol
schematic). In the presence of BSO and BCNU, the rate of GSH
utilization, as assayed by the decline in GS-bimane signal, was
higher in active neurons than in less-active ones (Fig. 2c,
Supplementary Fig. 2d) indicating a greater rate of GSH
utilization.
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To determine whether active neurons were operating nearer to
their maximum rate of GSH utilization, further demands on the
system were imposed by exposing neurons to an oxidative insult
(H2O2). We found that active neurons were able to respond to an
H2O2 insult with still greater rates of GSH utilization, assayed by
the decline in GSH-bimane signal (Fig. 2c) or by the decline in
GSH levels by conventional extract-based assay (all in the
presence of BSO and BCNU, Fig. 2d). Since a substantial amount
of basal and H2O2-induced GSH utilization will be due to GSH
peroxidation, we wanted to know whether neurons’ capacities for
GSH peroxidation were increased by synaptic activity. We found
that Gpx2 and Gpx4 were transcriptionally induced by synaptic
activity (Fig. 2e) and, moreover, cell-free extracts taken from
active neurons revealed higher levels of glutathione peroxidase
activity than extracts from control cultures, including astrocyte-
free cultures (Fig. 2f, Supplementary Fig. S2e). Thus, BiC-induced
synaptic activity enhances GPX activity and increases both basal
and peroxide-induced GSH utilization.

Active neurons use more GSH. While the increased peroxidation
of GSH is important in neutralizing harmful peroxide species, this
could theoretically lead to faster depletion of GSH. We studied
H2O2-induced GSH depletion in control neurons and neurons

that had experienced 24 h of BiC-induced elevated activity.
Remarkably, we found that while in control neurons GSH
depletion was substantial, active neurons displayed no GSH
depletion (Fig. 3a). Thus, despite active neurons generating more
ROS and using more GSH basally and more rapidly in response
to oxidative insults (Fig. 2), they are better able to maintain GSH
levels in the face of increased demand (Fig. 3a). The effects of
synaptic activity were inhibited by MK-801, placing the NMDAR
as a key mediator of these adaptive changes (Fig. 3a). To further
confirm the effects of synaptic activity on the intrinsic GSH
system, we performed an experiment employing Grx1-roGFP2,
which reports in real time the glutathione redox potential through
its coupling to redox-sensitive GFP via its fusion to glutar-
edoxin26. This biosensor is highly sensitive, capable of detecting
nanomolar changes in oxidized GSSG against a background of
millimolar reduced GSH26. In neurons expressing Grx1-roGFP2,
this high sensitivity leads to a saturating response on exposure to
low concentrations of H2O2 (Z50 mM). However, by employing a
lower dose (15 mM), we can monitor the response of the probe in
control neurons compared with neurons that have experienced
24 h of BiC-induced burst activity. We found that the
perturbation of the GSH redox potential induced by 15 mM
H2O2 was significantly lower in the more active neurons than in
the control neurons (Supplementary Fig. 3a–c). This supports the
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Figure 1 | The GSH system is a major defense against Puma-dependent oxidative stress-induced apoptosis in developing cortical neurons.

(a,b) Inhibition of GCL activity with BSO treatment depletes cortical neurons of glutathione. Cortical neurons were treated with BSO (200 mM here and

throughout) for 24 h, after which GSH levels were measured using in vivo labelling with MCB or a colourimetric assay of total glutathione in cell-free

extracts (see methods). *P¼0.0009 (a, n¼ 5), 0.013 (b) n¼4), Student’s t-test here and throughout unless otherwise stated. Exact P values are quoted

throughout unless Po0.0001. Mean±s.e.m. is shown here and throughout. (c) Oxidative stress-induced Puma mRNA expression is potentiated by GSH

depletion. Neurons were treated with BSO for 24 h, then subsequently treated with 50 or 100mM H2O2 and Puma expression analysed by qRT–PCR,

normalized to Gapdh. *P¼0.024, 0.005 referring to asterisks as shown from left to right (here and throughout). One-way analysis of variance followed by

Fisher’s post hoc test (1WA-Fph), n¼4. (d) Neuronal vulnerability to H2O2-induced death is potentiated by GSH depletion. Neurons were treated with BSO

for 24 h, then treated with different concentrations of H2O2, with cell death analysed 24 h later. *Po0.0001, o0.0001, 1WA-FPh; #P¼0.0352 compared

with control condition (n¼4 (BSO), n¼ 2 (Con)). (e) Example pictures from d. (f) H2O2-induced neuronal apoptosis is Puma dependent. Pumaþ /þ and

Puma� /� cortical neurons were exposed to 100 mM H2O2. *Po0.0001, o0.0001; 2WA-FPh (n¼6 Pumaþ /þ ; n¼4 Puma� /� ).
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notion that the capacity of the GSH system is enhanced by
synaptic activity.

We next studied the influence of synaptic activity on
vulnerability to H2O2 insults in the presence or absence of
chronic BSO pre-treatment (to deplete GSH levels). BiC-induced
synaptic activity strongly repressed H2O2-induced Puma induc-
tion (Fig. 3b) and protected neurons against consequent apoptosis
(Fig. 3c). However, in GSH-depleted neurons, activity-dependent
protection was abolished (Fig. 3c), demonstrating the importance
of the GSH system in activity-dependent protection against
oxidative insults, likely in conjunction with alterations to other
antioxidant systems27. In addition, we observed that NMDAR
blockade abolished the effects of BiC-induced synaptic activity,
both in terms of preventing H2O2-induced Puma induction
(Fig. 3b), preventing H2O2-induced GSH depletion (Fig. 3a), and
H2O2-induced neuronal death (Supplementary Fig. 3d). Note that
the antagonist of the major group I mGluR in cortical neurons
(mGluR5) MTEP did not prevent activity-dependent protection
((Supplementary Fig. 3d), while the AMPAR antagonist CNQX
(which prevents BiC/4-AP-induced bursting that leads to
NMDAR activation) did inhibit protection (Supplementary
Fig. 3d). Collectively these data indicate that NMDAR synaptic
activity boosts either GSH biosynthesis, or the recycling
(reduction) of oxidized glutathione, or both. These changes
clearly more than compensate for elevated GSH utilization due to

synaptic activity (Fig. 2c,d), since they enable GSH levels to be
maintained even in the face of exogenous oxidative insults.

Activity induces GSH biosynthesis and recycling. To assess
whether synaptic NMDAR activity boosts GSH biosynthesis, we
first studied the impact of acutely blocking GSH biosynthesis
(BSO treatment) just before application of the oxidative insult.
Acute BSO treatment increased the rate of H2O2-induced
GSH depletion in both highly active and less-active (control)
neurons (Fig. 3d), consistent with ongoing biosynthesis being an
important part of neuronal GSH homeostasis28. Significantly,
however, the magnitude of the effect of blocking GSH
biosynthesis was greater in active neurons than less-active
neurons (Fig. 3e), indicating that the rates of GSH biosynthesis
were greater in active neurons.

Since our standard cortical culture preparation contains a
mixture of around 90–95% neurons and 5–10% astrocytes27,29,
we wanted to confirm that the effects of synaptic activity were
mediated by the neurons themselves. We repeated the experiment
in Fig. 3d using neuronal cultures essentially devoid of astrocytes
(achieved by addition of an antimitotic agent on the day of
plating) and obtained qualitatively similar results (Fig. 3f).
Moreover, the magnitude of the effect of blocking GSH
biosynthesis by BSO treatment was greater in highly active
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Figure 2 | Electrically active neurons utilize more GSH and upregulate GSH peroxidase activity. (a,b) Synaptic activity does not alter steady-state basal

GSH levels in unstressed neurons. Cortical neurons were stimulated with BiC/4-AP for 24 h, after which GSH levels were measured using in vivo MCB

labelling (a) or a colourometric assay in cell-free extracts (b) see Methods, n¼4 for both. (c) GSH utilization is enhanced by synaptic activity. Neurons

were treated ±BiC/4-AP (BiC) for 24 h. Subsequently, cells were treated with BSOþ BCNU (±H2O2) for 1, 2, 4, 8 or 12 h or left untreated. Thirty minutes

before the end of this period of time, cells were loaded with MCB and GS-bimane fluorescence measured (normalized to protein). For each condition,

GS-bimane fluorescence was plotted against time and the rate of decline in fluorescence (a measure of rate of GSH utilization) obtained by fitting a line to

the data. *P¼0.0039, 0.033, 0.021, 0.0029, 2WA-FPh (n¼ 7). n.b., where one asterisk indicates two comparisons, the P value for the comparison closest

to the asterisk is shown first. See Supplementary Fig. 2c and 2d for schematic of the experimental protocol and example of an experimental replicate used

to obtain the rate of decline in GS-bimane fluorescence. (d) GSH utilization is enhanced by synaptic activity. Neurons were treated ±BiC/4-AP for 24 h.

Subsequently, the cells were treated with BSOþBCNU for 4 h, after which GSH levels were determined using the colorimetric method and normalized to

protein levels. *P¼0.0058, (n¼ 3). (e) Synaptic activity upregulates glutathione peroxidase 2 and 4 mRNA expression. Neurons were treated±BiC/4-AP

for 24 h and expression of the indicated Gpx genes analysed. *P¼0.017, 0.022 (n¼ 10 Gpx2, n¼ 5 Gpx4, n¼9 Gpx1). (f) Glutathione peroxidase enzyme

activity is increased by synaptic activity. Neurons were treated±BiC/4-AP for 24 h and GPX enzyme activity measured. *P¼0.041 (n¼ 8).
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*P¼0.023, 0.045 (n¼ 5). (l) Synaptic activity induces Gclc protein expression in astrocyte-free cortical neuronal cultures, normalized to beta-actin.

*P¼0.022 (n¼ 9). (m) Synaptic activity (24 h) increases glutathione reductase enzyme activity. *P¼0.011 (n¼9). (n) Synaptic activity increases

glutathione reductase mRNA expression. *P¼0.036 (n¼4).
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neurons than less-active neurons (Fig. 3g), as was observed in
mixed cultures, indicating that activity-dependent increases in
GSH biosynthesis is intrinsic to the neurons themselves.

To directly analyse the activity of the GSH biosynthetic
pathway, we assayed, in cell extracts, the activity of GCL (the rate-
limiting step in GSH biosynthesis). Extracts taken from neurons
experiencing strong synaptic activity in the previous 24 h
exhibited substantially more GCL activity than did extracts from
control neurons (Fig. 3h). This activity-dependent increase in
GCL activity was blocked by the transcription inhibitor
Actinomycin D (Fig. 3i), suggestive of a role for de novo
gene expression. Indeed, synaptic NMDAR activity increased

expression of Gclc. Consistent with a direct effect on the
transcriptional activity of the Gclc promoter, activity of a
luciferase-based reporter of the Gclc promoter Gclc-Luc30 was
induced by BiC/4-AP stimulation (Supplementary Fig. 3f). We
also wanted to study the regulation of Gclc mRNA in astrocyte-
free neurons. Because astrocytes produce more GSH than
neurons and express more GCL1, we wanted to determine
whether the presence of astrocytes was partly masking the true
extent of activity-dependent induction of Gclc in neurons. Gclc
mRNA levels in astrocyte-free neuronal cultures were found to be
around half of that in mixed cultures (5–10% astrocytes) and
seven times lower than those in pure astrocyte cultures
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Figure 4 | Cooperation between synaptic activity and astrocytic Nrf2 activators in supporting neuronal GSH levels. (a,b) The Nrf2 activator CDDOTFEA

induces Gclc expression and GCL activity in astrocytes but not in neurons. Regular astrocyte-containing (AC) cultures (5–10% astrocytes), astrocyte-free

(AF) neuronal cultures and astrocyte cultures were treated with CDDOTFEA (250 nM) for 24 h after which Gclc mRNA (P¼0.0033, 2WA-Fph, n¼4) and

GCL activity (P¼0.0002, 2WA, Fph, n¼ 5) were assayed. (c) CDDOTFEA protects neuronal cultures against H2O2-induced GSH loss via an astrocyte-

dependent mechanism. AC- and AF-neuronal cultures were treated ±CDDOTFEA for 24 h after which the rate of GSH loss induced by 100mM H2O2 was

measured by MCB assay. *P¼0.0274, 2WA-Fph (n¼ 5). (d) Neurons were treated ±CDDOTFEA±MRP1 inhibitor (MK571, 10mM) and H2O2 (100mM)-

induced neuronal death induced 24 h later. *P¼0.0027, 0.003, 0.0017, 2WA-Fph (n¼4). (e) Astrocyte-free neurons still exhibit activity-dependent

protection against oxidative stress but display elevated overall vulnerability. AC- and AF-neuronal cultures were treated ±BiC/4-AP for 24 after which the

indicated concentrations of H2O2 were applied and cell death analysed 24 h later. *Po0.0001 for all; #P¼0.0007, 0.0002 comparing AF-neuronal death

with equivalent AC-neuronal death level, 1WA-Fph (n¼ 6). (f) Synaptic activity and Nrf2 activation by CDDOTFEA cooperate to prevent GSH depletion in

astrocyte-containing neuronal cultures. Regular astrocyte-containing neuronal cultures were treated ±BiC/4-AP±CDDOTFEA as indicated for 24 h

after which the rate of GSH loss induced by 200mM H2O2 was measured by MCB assay. *P¼0.0005, 0.0207, o0.0001, 0.0003, 0.0006, 1WA-Fph

(n¼4–12). (g) Synaptic activity and Nrf2 activation by CDDOTFEA cooperate to prevent oxidative stress-induced death in astrocyte-containing neuronal

cultures. Regular astrocyte-containing neuronal cultures were treated ±BiC/4-AP±CDDOTFEA as indicated for 24 h after which 200mM H2O2 was

applied and cell death analysed 24 h later. *P¼o0.0001, o0.0001, o0.0001, 0.0096, 0.0003, 2WA-Fph (n¼ 8).
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(Supplementary Fig. 3g). Importantly, BiC-induced synaptic
activity triggered an increase in Gclc mRNA and protein
expression in astrocyte-free cultures (Fig. 3k,l, Supplementary
Fig. 3e). Collectively, these data indicate that activity-dependent
induction of neuronal GSH biosynthetic capacity plays a key role
in sustaining GSH levels in the face of increased demand.

While enhanced biosynthesis induced by synaptic activity
clearly plays a major role in maintaining GSH levels in the face of
increased utilization, we also considered whether synaptic activity
boosts GSH recycling. We noted that GSH utilization following
H2O2 exposure in the presence of BSO was still lower in active
neurons than control (Fig. 3d), whereas in the presence of both
BSO and BCNU the reverse was true (Fig. 2c). This indicates that
synaptic activity is also boosting GSH recycling, a process
whereby oxidized GSSG is reduced to GSH in a reaction catalysed
by glutathione reductase. Indeed, BiC-induced synaptic activity
was found to increase GR enzyme activity in neuronal cultures in
the presence (Fig. 3m) or absence of astrocytes (Supplementary
Fig. 3h), induce Gsr mRNA expression (Fig. 3n) and also
induce activity of a luciferase reporter of the Gsr promoter
(Supplementary Fig. 3i).

Cooperation between activity and astrocytic Nrf2. Forebrain
neurons receive significant antioxidant support from surrounding
astrocytes31. This non-cell-autonomous support is regulated by a
gene expression programme controlled by the transcription factor
NF-E2-related factor 2 (Nrf2 (refs 31,32). Activation of Nrf2-
mediated gene expression in astrocytes, either via overexpression,
pharmacological activation or activation by stressors such as
oxidative stress or brief ischaemia confers non-cell-autonomous
protection to surrounding neurons in a variety of models,
including rodent models of neurodegenerative disease, as well as
human stem cell-derived neuron-astrocyte systems29,31,33. The
mechanism of protection involves the increased synthesis of
astrocytic GSH, which is released, broken down and taken up by
neurons to be used as precursors for their own GSH synthesis34.
As such, this non-cell-autonomous support still requires neurons
to have robust intrinsic systems for the synthesis of GSH. Indeed,
astrocytic protection of neurons is abrogated by neuronal Gclc
knockdown35. This raises the possibility that astrocytic Nrf2
activation (in boosting astrocytic GSH synthesis and supply of
GSH precursors to neurons), would cooperate with synaptic
activity (in boosting neuronal GSH biosynthetic capacity) in
enabling the maintenance of neuronal GSH levels in the face of
oxidative insults.

To investigate this, we used a potent Nrf2 activator, the
triterpenoid 1[2-Cyano-3,12-dioxool-eana-1,9(11)-dien-28-oyl]
trifluoroethylamide (CDDOTFEA (ref. 36)). We recently showed
that CDDOTFEA protects cortical neurons against H2O2-induced
neuronal death in a Nrf2-dependent manner37. Moreover, the
neuroprotective actions of CDDOTFEA were found to be mediated
by astrocytes37. Consistent with this, CDDOTFEA treatment
boosts Gclc mRNA expression and GCL activity in rat astrocytes
but not in neurons (Fig. 4a,b). Moreover, CDDOTFEA treatment
prevented H2O2-induced GSH depletion in rat neuronal cultures
containing astrocytes but not in astrocyte-free neuronal cultures
(Fig. 4c). In addition, we found that astrocyte-mediated
CDDOTFEA-induced protection is inhibited by an inhibitor of
MRP1 (MK571), responsible for astrocytic GSH efflux1 (Fig. 4d).
This is consistent with the known GSH-dependent mechanism of
astrocytic Nrf2-mediated neuroprotection34,37.

The astrocyte dependency of the effects of CDDOTFEA in
preventing H2O2-induced GSH depletion contrasts strongly with
the astrocyte-independent actions of synaptic activity in prevent-
ing GSH depletion and inducing Gclc expression (Fig. 3f,l).

Consistent with this, we observe activity-dependent neuro-
protection against H2O2-induced neuronal death in astrocyte-
free cultures (Fig. 4e). We noted though that in astrocyte-free
neuronal cultures, overall vulnerability is increased, compared to
astrocyte-containing cultures (Fig. 4e). This both confirms that
astrocyte support can be valuable and strongly suggests that
astrocytic support and activity-dependent protection may be
additive. We therefore investigated the effect of combining the
cell-autonomous effect of BiC/4-AP-induced synaptic activity
with the non-cell-autonomous, astrocyte-dependent action of
CDDOTFEA. We used a strong insult (200 mM H2O2) designed to
expose any cooperativity. Importantly, we found that while both
synaptic activity and CDDOTFEA separately promoted neuro-
protection and reduced GSH depletion, combined their effect was
greater than either treatment alone (Fig. 4f,g). To conclude, these
data support the concept that synaptic activity-dependent
induction of the intrinsic neuronal antioxidant defenses can act
in concert with support provided by nearby astrocytes.

In vivo NMDAR blockade represses GSH biosynthesis. We next
investigated the extent to which synaptic NMDAR activity reg-
ulates the GSH system in vivo in the developing brain. We studied
the effects of inducing NMDAR hypoactivity by administrating
the NMDAR antagonist MK-801 to P7 rats. MK-801 adminis-
tration led to a reduction in total glutathione levels in the fore-
brain (Fig. 5a). Moreover, analysis of the activity of GSH pathway
enzymes revealed that NMDAR hypoactivity led to a strong
reduction in GCL activity in the brain (Fig. 5b), which was also
associated with a strong reduction in Gclc mRNA expression
(Fig. 5c). Expression of Gsr mRNA was also repressed by MK-801
administration (Supplementary Fig. 4a) but GR enzyme activity
was not repressed (Supplementary Fig. 4b), potentially due
to changes in mRNA not yet reflected at the protein level.
Collectively these data suggest that NMDAR hypoactivity leads to
a deficit in the GSH biosynthetic pathway in developing neurons
due to a requirement for NMDAR activity to support expression
of Gclc. Administration of NMDAR antagonists to rodents within
the first two postnatal weeks has been consistently shown to
induces an increase in apoptosis in certain brain regions,
including the hippocampus38. Our observations regarding the
role of the NMDAR in coupling synaptic activity to activation of
the GSH biosynthetic pathway, via transcriptional induction of
Gclc raised the possibility that dysregulation of GSH biosynthesis
underlies some of the deleterious effects of NMDAR hypoactivity
in the developing brain. We next tested this hypothesis.

Rescue of degeneration triggered by in vivo MK-801.
Since GCL catalyses the production of g-glutamyl cysteine
(GCEE), we reasoned that we may be able to bypass any deficits
in GCL activity by supplying the brain with a cell-permeable
(monoethyl ester) form of g-GCEE. Before performing in vivo
experiments, we assessed the efficacy of GCEE supplementation
on cultured cortical neurons, finding that it inhibited the deple-
tion of GSH levels in neurons treated with the GCL inhibitor BSO
(Fig. 5d). Thus, supplying neurons with g-GCEE does indeed
bypass neurons’ requirement for GCL. Moreover, GCEE supple-
mentation also substantially reduced the rate of H2O2-induced
GSH depletion in control neurons (Fig. 5e), and prevented Puma
induction (Fig. 5f), essentially mimicking the effect of synaptic
activity. As expected, GCEE was also neuroprotective against
H2O2-induced apoptosis (Fig. 5g). As a caveat, it is important to
note that g-GCEE can act as an antioxidant directly as well as
providing the final precursor for GSH synthesis39.

We next investigated the effect of GCEE supplementation on
the effects of NMDAR hypoactivity in vivo, focusing on the
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observed reduction in GSH levels and on the acute increase in
neuronal apoptosis observed on administration of MK-801 at
doses similar to those that also cause long-lasting neurobehavioral
deficits38,40,41. We found that co-administration of GCEE with
MK-801 partly reversed the loss of GSH induced by NMDAR
hypoactivity (Fig. 5h), demonstrating functional activity of GCEE
in the brain, consistent with previous studies42. We then

investigated whether inhibiting the NMDAR hypoactivity-
induced GSH deficit had any effect on the acute increases in
apoptosis known to be triggered at this developmental stage.
Focusing on the hippocampus, we observed a marked increase in
neurodegeneration 24 h after MK-801 administration (Fig. 5i,j),
consistent with previous studies38. Importantly, levels of
apoptosis were lowered by around 50% by administration of
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respectively). Scale bar, 30mm.
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GCEE (Fig. 5i,j). Thus, while we cannot rule out the effects of
GCEE in non-neuronal cells, these rescue experiments show that
in the developing brain, the deficits in GSH biosynthesis induced
by NMDAR hypoactivity are causally linked to neuronal loss.

Discussion
In this study, we have shown that synaptic NMDAR activity plays
a key role in regulating the capacity of the glutathione-based
antioxidant system in developing neurons. Synaptic activity is
energetically expensive, placing an ATP demand on the neuron,
which must be met by increased metabolic activity, particularly
oxidative phosphorylation20. In development, these demands are
particularly strong, since synaptic activity may also be coupled
to extensive structural changes such as neurite outgrowth/
aborization, synaptogenesis and experience-dependent plasticity.
Neuronal electrical activity is known to induce ROS
production24,25, which explains why highly active neurons
exhibit higher rates of GSH utilization (Fig. 2c,d).

These observations provide a plausible biological explanation
for why the GSH system should be subject to activity-dependent
control. If ROS generation in active neurons is higher, then it
makes sense for the capacity of neurons to synthesize, recycle and
utilize GSH to also be increased to ensure the correct redox
balance in the neuron. The increased capacity produced is greater
than the increased demand, since synaptic activity protects
neurons against additional exogenous insults, potentially repre-
senting an added safeguard against unexpected increased
demand. Given the deleterious effects of GSH depletion, the
transcriptional control of GSH system components described
likely represent a major part of neurons’ adaption of their
antioxidant defenses, in concert with changes to the thioredoxin–
peroxiredoxin system27,43,44. The increased resilience provided by
enhanced antioxidant defenses may be augmented by the activity-
dependent regulation of pro- and anti-apoptotic genes45,46,
although of note, we observe activity-dependent protection
against both apoptotic and non-apoptotic ROS-induced death
(induced by low and high ROS respectively).

The role of the NMDAR activity in boosting GSH biosynthesis
adds to our knowledge regarding the neuroprotective actions of
physiological synaptic NMDAR activity, which contrast with the
deleterious effects of chronic NMDAR activation (particularly
extrasynaptic)45,47. One can speculate that clinically well-
tolerated NMDAR antagonists such as memantine, which
favour the antagonism of harmful chronic NMDAR activity
over phasic activation48,49 would interfere with the GSH system
less than conventional antagonists. Memantine is used to treat
Alzheimer’s disease and shows promise in preclinical models of
Huntington’s disease48,50. Since both are diseases associated with
GSH deficits3, it would be important to not interfere with signals
that support GSH biosynthesis.

NMDAR hypoactivity (induced by a variety of antagonists)
during development triggers both acute pathological and long-
lasting behavioural disturbances in rodents, such as an acute
increase in apoptotic-like neuronal death in a variety of brain
regions38 as well as long-term behavioural and cognitive effects
extending into adulthood, including deficits in prepulse
inhibition, increased perseverative behaviour and cognitive
dysfunction. While the NMDAR-antagonistic properties of
ethanol contribute to its acute neurotoxicity in models of fetal
alcohol spectrum disorders16, milder NMDAR hypofunction
during development has emerged as a prominent hypothesis
for the aetiology of SZ, partly as a result of the above
behavioural deficits being relevant to SZ, as well as the earlier
observations that NMDAR antagonists transiently reproduced
key psychomimetic and behavioural symptoms in humans14.

Furthermore, a reduction in cortical parvalbumin-positive
interneurons, a hallmark of SZ, can also be triggered by
NMDAR antagonists14, suggesting that they may be particularly
vulnerable to NMDAR hypofunction (the relatively young age
of the rats used in the current study prevented analysis of
parvalbumin-positive interneurons since they are yet to develop).
Indeed, such enhanced vulnerability to early-life oxidative stress
has been demonstrated51. It is possible that deficits in
parvalbumin-positive interneurons may arise from milder
episodes of NMDAR hypofunction than those required to cause
substantial neuronal death. More recently, genetic evidence,
particularly genome-wide association study, has implicated the
NMDAR subunit gene GRIN2B and regulators of NMDAR
activity (such as the Neuregulin-ErbB pathway) as susceptibility
genes for SZ14. Furthermore, molecular studies into the function
of SZ risk gene DISC1 (ref. 52) indicate a potential role in
controlling NMDAR function, such as via its interaction with
serine racemase (which generates the NMDAR co-agonist
D-serine53) or regulation of PDE4B–PKA–CREB pathway-
dependent GluN2A expression54.

The mechanism by which NMDAR hypoactivity results in
neuronal loss and dysfunction in the developing brain is
incompletely understood. Unlike in the adult, where necrotic
neuronal death induced by NMDAR hypoactivity is likely due to
excitotoxic disinhibition of GABAergic transmission, apoptotic
neuronal death in the developing brain (with immature
GABAergic circuits) is likely due to a cell-autonomous
requirement for synaptic NMDAR activity. Our current study
supports a model whereby transcriptional deregulation of GSH
biosynthesis contributes partly to the deleterious effects of
NMDAR hypoactivity, potentially in concert with transcriptional
repression of neuroprotective erythropoietin38. It is also not clear
what determines the developmental window of vulnerability of
the developing brain to NMDAR hypoactivity (circa P4-P21)38.
This window coincides broadly with the early part of
developmental synaptogenesis during which circuits are formed,
strengthened and refined. Synaptic activity is energetically
expensive20 requiring high rates of metabolism and involving
high levels of Ca2þ influx, risking elevated ROS generation that
must be detoxified. Our study shows that, consistent with this, the
rates of GSH utilization are indeed higher in highly active
neurons, making adaptive changes to the supply side of the GSH
system key to redox homeostasis. Another possibility is that the
decline in vulnerability to NMDAR blockade in later
development reflects additional antioxidant support supplied by
astrocytes, which are still proliferating during this period. Indeed,
astrocyte-mediated antioxidant support mediated by Nrf2-
dependent antioxidant gene expression is a major contributor
to neuronal resistance to oxidative insults in the mature brain31.
Moreover, our study here illustrates that both regulation of
intrinsic defenses within neurons, in combination with astrocytic-
derived support, is optimal for providing resilience to oxidative
insults.

Our findings that the NMDAR couples synaptic activity to
GCL-dependent GSH biosynthesis in developing neurons is
particularly interesting given that GSH deficits and GCL variants
are already implicated in the pathophysiology of SZ5. GSH levels
are lower in the cerebrospinal fluid of SZ patients and also in
the prefrontal cortex (PFC)4,5, and recent magnetic resonance
spectroscopy studies found that lowered GSH levels were
associated with stronger negative symptoms among SZ
patients5. Recently, a correlation between GSH levels in the
PFC and white matter integrity along the cingulum bundle was
demonstrated in both control and early psychosis patients55,
while a correlation between GSH levels and resting-state
functional connectivity was only observed in control subjects.
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This is significant given the known association of SZ with myelin
deficits and loss of connectivity in the PFC, and can be attributed
at the molecular level to a GSH deficit-induced impairment of
oligodendrocyte progenitor proliferation and maturation55.

Genetic evidence also supports a role for GSH system deficits
in SZ. Fibroblasts from SZ patients show a deficit in the induction
of GCLC9. Moreover, a significant association has been reported
between SZ and a CAG trinucleotide repeat polymorphism in the
GCLC 50 untranslated region. Allele combinations that conferred
a high risk of SZ were also associated with reduced induction of
GCL activity, GCLC expression and GSH levels in patient-derived
fibroblasts9. Of note, the product of GCL, g-GCEE, can act in
place of GSH in GPX1-catalysed peroxide reduction39, further
underlining its utility as a key antioxidant. The genetic
associations with GCLC are particularly intriguing in the light
of studies that show disease-relevant phenotypes in mouse
models of GSH deficiency, triggered by both genetic and
pharmacological means5. Mice deficient in Gclm have reduced
levels of GSH, and display enhanced responses to a
psychostimulant (amphetamine), altered stress responses and
social behaviour, impaired prepulse inhibition and deficits in
associative learning5,8. Moreover, both genetic and
pharmacologically induced models of GSH deficiency exhibit
impaired object recognition memory5.

The consequences of GSH deficits relevant to the pathophy-
siology of SZ include parvalbumin-positive interneuron dysfunc-
tion and deficits in myelination maturation, that can be reversed
by juvenile antioxidant treatment4,51,55. Moreover, the relevance
of redox imbalance to SZ is further strengthened by the recent
demonstration that juvenile antioxidant treatment prevents
electrophysiological and behavioural deficits in a developmental
model of SZ (neonatal ventral hippocampal lesion56). Another
effect of GSH deficits relevant to SZ pathophysiology is
impairment of NMDAR activity4. The NMDAR contains redox-
active cysteine residues, with currents potentiated by reducing
conditions and inhibited by oxidizing agents, including oxidized
glutathione GSSG11. GSH and its metabolites also have reported
direct actions on the ionotropic glutamate receptors57. Moreover,
depletion of GSH causes a selective reduction of NMDAR
currents and impairment of synaptic plasticity4. It is becoming
apparent that NMDAR hypoactivity and GSH deficits have a
reciprocal relationship, with one positively feeding back onto the
other. Transient NMDAR hypoactivity during development,
which can reduce GSH levels58,59, may trigger redox imbalance
and further repression of the NMDAR4. Downstream
consequences of NMDAR hypoactivity and redox imbalance,
such as alterations to the excitation–inhibition balance of certain
forebrain circuits, could contribute to the pathological phenotype.

To conclude, the fact that the GSH system can be transcrip-
tionally controlled by synaptic activity via the NMDAR means that
the capacity of the system can easily adapt to the increased
metabolic demands of active neurons. However, a consequence of
this is that NMDAR hypoactivity during development leads to a
deficit in this important antioxidant system.

Methods
Neuronal culture and synaptic activation. Cortical neurons from E21 Sprague–
Dawley rats were cultured as described60,61 and experiments performed at 8–10
DIV. Puma-knockout neurons were prepared from E17 Puma-null founder mice
obtained from Professor Andreas Strasser62. To obtain astrocyte-free cultures the
antimitotic agent cytosine arabinoside (Sigma) was added to the cultures on the day
of plating (DIV0) rather than the usual DIV4. This results in o0.2% GFAP-
positive astrocytes rather than the usual 5–10% (ref. 29). Cortical astrocyte cultures
were prepared as previously described63. Before stimulations, neurons were
transferred to a trophically deprived medium (22 (Tmo) containing 10% MEM
(Invitrogen) and 90% Salt/Glucose/Glycine medium consisting of: 114 mM NaCl,
0.219% NaHCO3, 5.292 KCl, 1 mM MgCl2, 2 mM CaCl2, 10 mM HEPES, 1 mM
glycine, 30 mM glucose, 0.5 mM sodium pyruvate, 0.1% phenol red; osmolarity

325 mOsm l� 1). Bursts of action potentials were induced through stimulation with
50 mM BiC and 250 mM 4-aminopyridine (BiC/4-AP), which in turn disinhibits the
neuronal network and depolarizes the cells, generating high frequency action
potential firing22. The following reagents were used: buthionine sulfoximine (BSO),
carmustine (BCNU), MK-801 were purchased from Tocris, BiC and H2O2 from
Sigma, g-glutamylcysteine-ethyl ester (GCEE) from Bachem, 4-aminopyridine
from Calbiochem. To quantify cell death, neurons were fixed and subjected to
nuclear DAPI (Vectorlabs) staining, then imaged using a Leica AF6000 LX imaging
system with a DFC350 FX digital camera. Cell death was quantified by counting
(blind) the number of pyknotic nuclei as a percentage of the total, with B1,500
cells counted per treatment.

In vivo MK-801 administration. All procedures were authorized under a UK
Home Office approved project licence and adhered to regulations specified in the
Animals (Scientific Procedures) Act (1986). Seven day-old (P7) Sprague–Dawley
rats of both sexes received two intraperitoneal injections of saline vehicle, or
0.5 mg kg� 1 MK-801 at 0 and 8 h, in addition to (where indicated) GCEE
(75 mg kg� 1). At 12 h or 24 h after the first injection, rats were killed and frontal
cortices were either collected and snap-frozen in liquid nitrogen for processing for
GSH content, enzyme assays or mRNA expression or fixed (3% paraformaldehyde,
4% sucrose in PBS) and paraffin imbedded for Fluoro-Jade staining, carried out as
described previously on 10-mm coronal sections64. Note that previous studies have
already found that MK-801 administration in the P7 rat brain involves the
degeneration of neurons and not astrocytes38. A high level of widespread
neurodegeneration was prominent in the hippocampus of MK-801 treated pups,
particularly in the dorsal aspects of the CA1 region. Cell death within this
anatomical region was quantified via manual (blind) counting of the total number
of Fluoro-Jade C positive fluorescent neurons within at least two fields of interest
per section. In each pup, at least three to five non-adjacent coronal sections were
quantified for hippocampal Fluoro-Jade C positivity. The total Fluoro-Jade Cþ cell
counts for each quantified coronal section were then averaged into a single data
point representing neurodegeneration in each animal (number of fluorescent cells
per field area).

Glutathione and GST assays. Cellular glutathione content was measured using
two methods. A colorimetric assay kit was used (Cayman Chemical Company)
following an established method described65. Post stimulation, the cells were lysed
over ice in 70ml assay buffer (0.2 M 2-(N-morpholino)-ethanesulphonic acid,
0.5 mM K2HPO4, 1 mM EDTA, pH 6) plus 0.5% Triton-X-100, then centrifuged at
15,700g at 4 �C for 10 min. For brain samples, tissue was defrosted and lysed on ice
using a dounce homogenizer in 10 ml of lysis buffer per mg tissue. Samples were
then mixed with an equal volume of metaphosphoric acid (10 g per 100 ml) and
centrifuged at 580g (2,500 r.p.m.) at 4 �C for 5 min to precipitate protein; and
200 mM triethanolamine was added to supernatants. Samples were then transferred
to a clear 96-well plate and the reaction was started by adding assay buffer with
GSH reaction mixture (containing NADPþ , glucose-6-phosphate, glucose-6-
phosphate dehydrogenase, glutathione reductase and Ellman’s reagent). Production
of 5-thio-2nitrobenzoic acid, (a yellow reaction product from reduction of Ellman’s
reagent with GSH) was measured for 20 min with a FLUOstar OPTIMA
(BMG Labtech, Aylesbury, UK). A portion of lysate, taken from before protein
precipitation, was set aside to determine protein concentration.

Alternatively, a fluorescent cell-based assay using MCB (Sigma) was performed.
MCB is a membrane-permeable dye that forms a fluorescent product when bound
to thiols; however, in the presence of glutathione S-transferase, it specifically
becomes conjugated to GSH (forming fluorescent GS-bimane) at a rate several
orders of magnitude faster18,66. Thirty minutes before the end of stimulation,
neurons were treated with 50 mM MCB, and allowed to incubate at 37 �C. Cells
were then washed once with fresh TMo, and lysed in K2HPO4 buffer containing
0.5% Triton-X-100. Lysates were centrifuged at 15,700g (13,000 r.p.m.) at 4 �C for
10 min, and supernatants were transferred to a black 96-well plate for fluorescence
measurement (excitation 405 nm, emission 520 nm) with a FLUOstar OPTIMA.
Lysates were then assayed for protein concentration using a BCA assay, to which
fluorescence values were normalized to.

The following experiments were performed to validate the MCB assay
conditions as an accurate way of measuring intracellular GSH levels. We confirmed
that the MCB concentration (50 mM, 300) is not limiting: incubation of neurons
with a cell-permeable ethyl ester form of GSH (GSH-EE) increases the cellular
GS-bimane signal (Supplementary Fig. 1a, the effect of GSH depletion (24 h BSO
treatment) is shown for contrast). We also compared the generation of GS-bimane
fluorescence signal (50 mM, 300) with an extended incubation time (50mM, 600) and
an elevated MCB concentration (250 mM, 300). We found that the GS-bimane
fluorescence signal using these two alternative conditions was modestly
higher-around 20% (50 mM, 600) and 40% (250 mM, 300) higher, respectively
(Supplementary Fig. 1b). However, we found that accompanying this slightly
higher signal was a greater proportion of signal remaining after GSH depletion by
24 h BSO treatment (Supplementary Fig. 1c). To determine the true degree of
GSH depletion 24 h BSO treatment, we used an alternative GSH assay (Promega’s
GSH-glo assay), which is a quantitative assay whose linear dose response was
confirmed using a standard curve of serial GSH dilutions (as per manufacturer’s
instructions). Using the GSH-glo method, we found that 24-h BSO treatment
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resulted in only 15±1% of GSH remaining compared to control (n¼ 4). This
figure was much closer to that observed with our original conditions (50 mM, 300),
with the remaining signal in the other two conditions (50 mM, 600 and 250 mM, 300)
being rather higher. This disproportionate increase in the apparently nonspecific
(GSH-independent) signal with longer incubation times and higher MCB
concentrations led us to conclude that the 50 mM, 300 conditions were near optimal.
In addition, to show approximate linearity in response to the MCB assay, we
performed an experiment where parallel sets of neurons were treated for different
times (2, 6 and 24 h) with BSO with GSH levels measured by MCB assay and
GSH-Glo assay in parallel. The close relationship between GSH levels and the
GSH-Glo assay were confirmed in all experiments by a standard curve. Moreover,
as can be seen below, there is a good correlation between the MCB assay and the
parallel GSH-glo data (Supplementary Fig. 1e). For example, a 6-h incubation with
BSO results in GSH depletion of 20–30%, as observed using both assays.

For live-cell imaging of the GSH redox potential, neurons expressing
Grx1-roGFP2 were subject to live-cell imaging on a Leica AF6000 LX imaging
system and DFC350 FX digital camera during treatment with H2O2. Pairs of
images were taken (ex 387±5 and 494±10; em 530±10 in both cases) and the
ratio calculated.

In addition, since formation of the GS-bimane adduct requires GST activity,
we studied GST activity (GST Assay Kit, Cayman) and found no influence of
BiC/4-AP-induced burst activity on GST activity (Supplementary Fig. 1d). This is
consistent with our observation that GSH levels measured by the MCB assay
(Con versus BiC/4-AP) were unchanged (Fig. 2b) as they were when using the
‘Ellman’s Reagent’ GSH assay (Fig. 2c). Any change in GST activity would likely
have resulted in a discrepancy between the two results.

GCL assay. To determine GCL activity, neurons were treated as indicated for 24 h
and the enzyme activity was recorded as described67. In brief, cell cultures were
lysed over ice in 650 ml lysis buffer (20 mM Tris, 1 mM EDTA, 250 mM sucrose,
20 mM sodium borate, 2 mM L-serine (borate and serine added to inhibit
g-glutamyl transpeptidase activity68), then centrifuged at 15,700g (13,000 r.p.m.) at
4 �C for 10 min. For brain samples, tissue was defrosted and lysed on ice using a
dounce homogenizer in 10ml of lysis buffer per mg tissue. Supernatants were then
redistributed to 50ml aliquots, one for each time point, and placed at 37 �C in a heat
block. For BSO samples, 15ml of 100 mM BSO was added to 285ml of control
supernatant and thoroughly mixed by vortex before redistribution. Fifty ml of GCL
reaction buffer (400 mM Tris, 40 mM L-glutamic acid, 2 mM EDTA, 20 mM
sodium borate, 2 mM L-serine, 40 mM MgCl2, 40 mM ATP, pH 7.4) was added to
each sample and allowed to incubate for 5 min. Reaction was started by adding
50ml of 20 mM cysteine to samples and incubated for 20, 15, 10 and 5 min. The
GCL reaction was arrested by adding 50 ml of metaphosphoric acid (2.5 g per
100 ml) to precipitate protein, samples were subsequently vortexed and placed on
ice for 20 min. After incubation, samples were centrifuged at 580g (2,500 r.p.m.) at
4 �C for 5 min. Following centrifugation, 20 ml of reaction mixture was transferred
to a black 96-well plate, and 180 ml of detection buffer (50 mM Tris (pH 10), 0.5 N
NaOH and 10 mM 2,3-Napthalenedicarboxyaldehdye (Sigma) (v/v/v—1.4/0.2/0.2))
was added to each well. The 2,3-Napthalenedicarboxyaldehdye in this mixture
rapidly forms a fluorescent cyclic reaction product with the cysteine thiol and
glutamyl amino groups of GSH and GCg (lexcitation max¼ 472 nm, lemission

max¼ 528 nm)69. The plate was left to incubate in the dark at room temperature for
30 min, and fluorescence intensity was measured (excitation 485 nm, emission
520 nm) with a FLUOstar OPTIMA (BMG Labtech, Aylesbury, UK). GCL activity
was determined by calculating rate of fluorescence increase over time, normalized
to protein content. Note that the BSO-treated samples were used as an initial
negative control to confirm that the assay was indeed measuring GCL activity. BSO
presence was found to inhibit the signal produced by the assay by 93±9% (n¼ 4).
Having confirmed this, BSO was not routinely used for subsequent experiments.

Glutathione peroxidase assay. To determine glutathione peroxidase (GPX)
activity, a kit was used (Calbiochem) following the method described70. Post
stimulation, cells were lysed in 50 ml of lysis buffer (20 mM HEPES pH 7.9, 100 mM
KCl, 300 mM NaCl, 10 mM EDTA, 0.1% Nonidet P-40) and centrifuged at 15,700g
(16,400 r.p.m.) at 4 �C for 10 min. Subsequently, 20ml of sample was distributed to
a well of a clear 96-well plate, with 70ml of assay buffer (50 mM Tris-HCl, pH 7.6,
5 mM EDTA), 50ml of co-substrate mixture (NADPH, glutathione and glutathione
reductase), with glutathione peroxidase as a positive control and lysis buffer as a
negative control. Using a multichannel pipette 20 ml of cumene hydroperoxide was
added to each well starting the reaction. NADPH absorbance was then read every
30 s for 15 min using FLUOstar OPTIMA (BMG Labtech, Aylesbury, UK). GPX
activity was determined by calculating rate of NADPH loss over time, normalized
to protein content.

Glutathione reductase assay. To determine glutathione reductase activity
NADPH oxidation was recorded as a loss of absorbance at 340 nm as described.
Post stimulation cells were lysed in 50 ml of lysis buffer (20 mM HEPES pH 7.9,
100 mM KCl, 300 mM NaCl, 10 mM EDTA, 0.1% Nonidet P-40) and centrifuged at
15,700g (16,400 r.p.m.) at 4 �C for 10 min. Subsequently, 20 ml of sample was dis-
tributed to a well of a clear 96-well plate, with 20 ml of 1 mM GSSG and 110ml of

assay buffer (100 mM Potassium Phosphate, pH 7.0), with a 0.1-U ml� 1 solution
of yeast glutathione reductase (Sigma) as a positive control and lysis buffer as a
negative control. Using a multichannel pipette 50 ml of 1 mM NADPH was added
to each well starting the reaction. NADPH absorbance was then read every 30 s for
15 min using FLUOstar OPTIMA (BMG Labtech, Aylesbury, UK). GR activity was
determined by calculating the rate of NADPH loss over time, normalized to protein
content.

MitoSOX imaging. Neurons were loaded with 3 mM MitoSOX (Invitrogen) for
15 min, followed by extensive washing. Note that since MitoSOX oxidation, and
mitochondrial oxidative stress in general, can arise from ROS generated in the
cytoplasm, MitoSOX oxidation is simply a metric of cellular ROS, and not of
mitochondrial ROS in particular. Mitosox fluorescence images were taken using a
Leica AF6000 imaging system with a DFC350 FX digital camera (ex/em 530/
590 nm). The rate of fluorescence increase (MitoSOX oxidation), relative to initial
fluorescence, was calculated before and after BiC/4-AP stimulation within 4 min
windows.

RNA isolation and quantitative RT-PCR. This was performed as described pre-
viously27. RNA was isolated using the Roche isolation reagents including
a 15-min DNase I treatment to avoid genomic DNA contamination of samples,
and eluted using 50 ml of RNase-free water. For quantitative PCR (qPCR),
complementary DNA (cDNA) was synthesized from 1 to 5 mg of RNA with the
Tanscriptor One-Step RT–PCR Kit (Roche). In brief, 7 ml of RNA was mixed on ice
with 10ml 2� cDNA Synthesis master mix, random primers: oligo primers 2:1
(total 3 ml), 2 ml deoxynucleotide mix (1 mM each: dATP, dTTP, dCTP and dGTP),
0.5 ml RNase inhibitor (40 U ml� 1), 0.5 ml reverse transcriptase (20 U ml� 1) and 3 ml
nuclease-free water. Reaction mixtures were vortexed and spun down and run in
parallel with at least one ‘no RT’ control. Samples were placed in a thermal cycler
and incubated for 10 min at 25 �C, 30 min at 55 �C, 5 min at 85 �C and were then
cooled down to 4 �C. This cDNA was then diluted to 6 ng ml� 1 for use in real-time
quantitative PCR. qPCR was performed in an Mx3000P qPCR System (Stratagene)
using 2� FastStart Universal SYBR Green Master Mix (Roche) according to the
manufacturer’s instructions. In brief, a total volume of 15 ml qPCR reaction mix
was added per well, containing 1 ml template DNA, SYBR Green master mix (7.5 ml,
containing ROX), 0.6 ml of forward and reverse primers at 200 nM final
concentration and 5.3 ml nuclease-free water. Technical replicates, NoRT controls
and template-free controls were included in each case. The cycling programme was
10 min at 95 �C; 40 cycles of 30 s at 95 �C, 40 s at 60 �C with detection of
fluorescence and 30 s at 72 �C; followed by one cycle of 1 min at 95 �C, 30 s at 55 �C
ramping up to 95 �C over 30 s with continuous fluorescence detection (for
dissociation curve). Expression of the gene interest was calculated, normalizing to
either GAPDH or 18 s as a housekeeping gene. Primers used are shown below.

Name Forward primer (50-30) Reverse primer (50-30)
Gapdh AGAAGGCTGGGGCTCACC AGTTGGTGGTGCAGGATGC
18s GTGGAGCGATTTGTCTGGTT CAAGCTTATGACCCGCACTT
Gclc CCAACCACCCAACCCTCTG TGCTCTGGCAGTGTGAATCC
Gsr GGCATGTCATCAAGGAGAAG TGGGATCTGGTTCTCATGAG
Gpx2 GCCTCAAGTATGTCCGCCCTG GGAGAATGGGTCGTCATAAGG
Gpx4 GGAGCCAGGAAGTAATCAAG ACCATAGCGCTTCACCAC
Gpx1 GGAGAATGGCAAGAATGAAG AAATGATGTACTTGGGGTCG

Transfection and reporter assays. Neurons were transfected at DIV8 using
Lipofectamine 2000 (Invitrogen) as described in Qiu, 2013 (ref. 60), using a total of
0.6 mg cDNA per well. For luciferase reporter assays, 0.1 mg of either pTK Renilla or
p-sv40 Renilla were transfected along with 0.5 mg of a 1.1 kb Gclc promoter
luciferase construct (a gift from Professor Naomi Fukagawa30, or mouse Gsr
promoter luciferase construct, a gift from Professor Shyam Biswal. Luciferase
assays were performed using the Dual Glo assay kit (Promega) with Firefly
luciferase-based reporter gene activity normalized to Renilla control.

Western blotting. Neurons were lysed in sample buffer (1.5 M Tris, 3% SDS, 15%
glycerol, 7.5% b-mercaptoethanol, 0.0375% bromophenol blue, pH 6.8) and boiled
for 4 min at 100 �C. Gel electrophoresis and western blotting was performed using
an Xcell Surelock system with 4–20% NuPage BisTris pre-cast gels (Invitrogen).
Post protein migration, the gels were blotted onto polyvinylidene difluoride
membranes (Millipore) and then blocked for 1 h at room temperature in 5% (w/v)
non-fat dried milk in TBS with 0.1% Tween 20. Membranes were then incubated
overnight at 4 �C in blocking solution and diluted primary antibodies: Gclc (1:1000,
Abcam), b-actin (1:2000, Abcam). Membranes were then washed in TBS with 0.1%
Tween 20, and incubated with the appropriate horseradish peroxidase-conjugated
secondary antibody for 1 h at room temperature. Membranes were washed again,
and visualized by incubating in LumiGlo reagent and peroxide (Cell Signalling
Technology) and exposing Kodak X-Omat film to the membranes.

Statistical analysis and equipment settings. Statistical testing involved a
two-tailed paired Student’s t-test. For studies employing multiple testing, we used
analysis of variance followed by Fisher’s least significant difference post hoc test.
For western blots, we used chemiluminescent detection on Kodak X-Omat film.
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Appropriate exposures were taken such that bands were not saturated. For figure
preparation of example western blots, linear adjustment of brightness/contrast was
applied (Photoshop) equally across the entire image, taking care to maintain some
background intensity. Pictures of transfected neurons were taken on a Leica
AF6000 LX imaging system, with a DFC350 FX digital camera. The DFC350 FX
digital camera is a monochrome camera, and so coloured images (for example, of
green fluorescent protein) essentially involve taking a black and white image (using
the appropriate filter set) and applying a colour to the image after capture. All
luminescent assays were performed on a FLUOstar OPTIMA (BMG Labtech,
Aylesbury, UK). Light collection time and gain were set such that counts were
substantially lower than the maximum level collectable. All chemicals were
obtained from Sigma Aldrich (Gillingham, UK) unless otherwise stated.

References
1. Dringen, R. & Hirrlinger, J. Glutathione pathways in the brain. Biol. Chem. 384,

505–516 (2003).
2. Fernandez-Fernandez, S., Almeida, A. & Bolanos, J. P. Antioxidant and

bioenergetic coupling between neurons and astrocytes. Biochem. J. 443, 3–11
(2012).

3. Johnson, W. M., Wilson-Delfosse, A. L. & Mieyal, J. J. Dysregulation of
glutathione homeostasis in neurodegenerative diseases. Nutrients 4, 1399–1440
(2012).

4. Do, K. Q., Cabungcal, J. H., Frank, A., Steullet, P. & Cuenod, M. Redox
dysregulation, neurodevelopment, and schizophrenia. Curr. Opin. Neurobiol.
19, 220–230 (2009).

5. Kulak, A. et al. Redox dysregulation in the pathophysiology of schizophrenia
and bipolar disorder: insights from animal models. Antioxid. Redox Signal. 18,
1428–1443 (2013).

6. Ghanizadeh, A. et al. Glutathione-related factors and oxidative stress in autism,
a review. Curr. Med. Chem. 19, 4000–4005 (2012).

7. Frustaci, A. et al. Oxidative stress-related biomarkers in autism: systematic
review and meta-analyses. Free Radic. Biol. Med. 52, 2128–2141 (2012).

8. Steullet, P. et al. Redox dysregulation affects the ventral but not dorsal
hippocampus: impairment of parvalbumin neurons, gamma oscillations, and
related behaviors. J. Neurosci. 30, 2547–2558 (2010).

9. Gysin, R. et al. Impaired glutathione synthesis in schizophrenia: convergent
genetic and functional evidence. Proc. Natl Acad. Sci. USA 104, 16621–16626
(2007).

10. Steullet, P., Neijt, H. C., Cuenod, M. & Do, K. Q. Synaptic plasticity impairment
and hypofunction of NMDA receptors induced by glutathione deficit: relevance
to schizophrenia. Neuroscience 137, 807–819 (2006).

11. Lipton, S. A. et al. Cysteine regulation of protein function—as exemplified by
NMDA-receptor modulation. Trends Neurosci. 25, 474–480 (2002).

12. Carlson, G. C. Glutamate receptor dysfunction and drug targets across models
of autism spectrum disorders. Pharmacol. Biochem. Behav. 100, 850–854 (2012).

13. Fountoulakis, K. N. The possible involvement of NMDA glutamate receptor in
the etiopathogenesis of bipolar disorder. Curr. Pharm. Des. 18, 1605–1608 (2012).

14. Kantrowitz, J. T. & Javitt, D. C. N-methyl-d-aspartate (NMDA) receptor
dysfunction or dysregulation: the final common pathway on the road to
schizophrenia? Brain Res. Bull. 83, 108–121 (2010).

15. Schwartz, T. L., Sachdeva, S. & Stahl, S. M. Genetic data supporting the NMDA
glutamate receptor hypothesis for schizophrenia. Curr. Pharm. Des. 18,
1580–1592 (2012).

16. Olney, J. W. et al. The enigma of fetal alcohol neurotoxicity. Ann. Med. 34,
109–119 (2002).

17. Chatterjee, S., Noack, H., Possel, H., Keilhoff, G. & Wolf, G. Glutathione levels
in primary glial cultures: monochlorobimane provides evidence of cell type-
specific distribution. Glia 27, 152–161 (1999).

18. Sun, X. et al. Two-photon imaging of glutathione levels in intact brain indicates
enhanced redox buffering in developing neurons and cells at the cerebrospinal
fluid and blood-brain interface. J. Biol. Chem. 281, 17420–17431 (2006).

19. Steckley, D. et al. Puma is a dominant regulator of oxidative stress induced Bax
activation and neuronal apoptosis. J. Neurosci. 27, 12989–12999 (2007).

20. Harris, J. J., Jolivet, R. & Attwell, D. Synaptic energy use and supply. Neuron 75,
762–777 (2012).

21. Hardingham, G. E., Arnold, F. J. & Bading, H. Nuclear calcium signaling
controls CREB-mediated gene expression triggered by synaptic activity. Nat.
Neurosci. 4, 261–267 (2001).

22. Papadia, S., Stevenson, P., Hardingham, N. R., Bading, H. & Hardingham, G. E.
Nuclear Ca2þ and the cAMP response element-binding protein family
mediate a late phase of activity-dependent neuroprotection. J. Neurosci. 25,
4279–4287 (2005).

23. Marvin, J. S. et al. An optimized fluorescent probe for visualizing glutamate
neurotransmission. Nat. Methods 10, 162–170 (2013).

24. Hongpaisan, J., Winters, C. A. & Andrews, S. B. Strong calcium entry activates
mitochondrial superoxide generation, upregulating kinase signaling in
hippocampal neurons. J. Neurosci. 24, 10878–10887 (2004).

25. Brennan, A. M. et al. NADPH oxidase is the primary source of superoxide
induced by NMDA receptor activation. Nat. Neurosci. 12, 857–863 (2009).

26. Gutscher, M. et al. Real-time imaging of the intracellular glutathione redox
potential. Nat. Methods 5, 553–559 (2008).

27. Papadia, S. et al. Synaptic NMDA receptor activity boosts intrinsic antioxidant
defenses. Nat. Neurosci. 11, 476–487 (2008).

28. Griffith, O. W. Biologic and pharmacologic regulation of mammalian
glutathione synthesis. Free Radic. Biol. Med. 27, 922–935 (1999).

29. Bell, K. F. et al. Mild oxidative stress activates Nrf2 in astrocytes, which
contributes to neuroprotective ischemic preconditioning. Proc. Natl Acad. Sci.
USA 108, E1–E2 author reply E3-4 (2011).

30. Li, M., Chiu, J. F., Kelsen, A., Lu, S. C. & Fukagawa, N. K. Identification and
characterization of an Nrf2-mediated ARE upstream of the rat glutamate cysteine
ligase catalytic subunit gene (GCLC). J. Cell. Biochem. 107, 944–954 (2009).

31. Vargas, M. R. & Johnson, J. A. The Nrf2-ARE cytoprotective pathway in
astrocytes. Expert Rev. Mol. Med. 11, e17 (2009).

32. Hayes, J. D., McMahon, M., Chowdhry, S. & Dinkova-Kostova, A. T. Cancer
chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway.
Antioxid. Redox Signal. 13, 1713–1748 (2010).

33. Gupta, K., Chandran, S. & Hardingham, G. E. Human stem cell-derived
astrocytes and their application to studying Nrf2-mediated neuroprotective
pathways and therapeutics in neurodegeneration. Br. J. Clin. Pharmacol. 75,
907–918 (2012).

34. Shih, A. Y. et al. Coordinate regulation of glutathione biosynthesis and release
by Nrf2-expressing glia potently protects neurons from oxidative stress. J.
Neurosci. 23, 3394–3406 (2003).

35. Diaz-Hernandez, J. I., Almeida, A., Delgado-Esteban, M., Fernandez, E. &
Bolanos, J. P. Knockdown of glutamate-cysteine ligase by small hairpin RNA
reveals that both catalytic and modulatory subunits are essential for the survival
of primary neurons. J. Biol. Chem. 280, 38992–39001 (2005).

36. Yates, M. S. et al. Pharmacodynamic characterization of chemopreventive
triterpenoids as exceptionally potent inducers of Nrf2-regulated genes. Mol.
Cancer Ther. 6, 154–162 (2007).

37. Gupta, K. et al. Human embryonic stem cell derived astrocytes mediate non-
cell-autonomous neuroprotection through endogenous and drug-induced
mechanisms. Cell Death Differ. 19, 779–787 (2012).

38. Ikonomidou, C. Triggers of apoptosis in the immature brain. Brain. Dev. 31,
488–492 (2009).

39. Quintana-Cabrera, R. et al. gamma-Glutamylcysteine detoxifies reactive oxygen
species by acting as glutathione peroxidase-1 cofactor. Nat. Commun. 3, 718
(2012).

40. Harris, L. W., Sharp, T., Gartlon, J., Jones, D. N. & Harrison, P. J. Long-term
behavioural, molecular and morphological effects of neonatal NMDA receptor
antagonism. Eur. J. Neurosci. 18, 1706–1710 (2003).

41. Fredriksson, A., Archer, T., Alm, H., Gordh, T. & Eriksson, P. Neurofunctional
deficits and potentiated apoptosis by neonatal NMDA antagonist
administration. Behav. Brain Res. 153, 367–376 (2004).

42. Drake, J., Kanski, J., Varadarajan, S., Tsoras, M. & Butterfield, D. A. Elevation
of brain glutathione by gamma-glutamylcysteine ethyl ester protects against
peroxynitrite-induced oxidative stress. J. Neurosci. Res. 68, 776–784 (2002).

43. Hardingham, G. E. & Lipton, S. A. Regulation of neuronal oxidative and
nitrosative stress by endogenous protective pathways and disease processes.
Antioxid. Redox Signal. 14, 1421–1424 (2011).

44. Bell, K. F. & Hardingham, G. E. CNS peroxiredoxins and their regulation in
health and disease. Antioxid. Redox Signal. 14, 1467–1477 (2011).

45. Hardingham, G. E. & Bading, H. Synaptic versus extrasynaptic NMDA receptor
signalling: implications for neurodegenerative disorders. Nat. Rev. Neurosci. 11,
682–696 (2010).

46. Bell, K. F. & Hardingham, G. E. The influence of synaptic activity on neuronal
health. Curr. Opin. Neurobiol. 21, 299–305 (2011).

47. Wahl, A. S. et al. Hypoxic/ischemic conditions induce expression of the
putative pro-death gene Clca1 via activation of extrasynaptic N-methyl-D-
aspartate receptors. Neuroscience 158, 344–352 (2009).

48. Lipton, S. A. Paradigm shift in neuroprotection by NMDA receptor blockade:
memantine and beyond. Nat. Rev. Drug Discov. 5, 160–170 (2006).

49. Xia, P., Chen, H. S., Zhang, D. & Lipton, S. A. Memantine preferentially blocks
extrasynaptic over synaptic NMDA receptor currents in hippocampal autapses.
J. Neurosci. 30, 11246–11250 (2010).

50. Parsons, M. P. & Raymond, L. A. Extrasynaptic NMDA receptor involvement
in central nervous system disorders. Neuron 82, 279–293 (2014).

51. Cabungcal, J. H., Steullet, P., Kraftsik, R., Cuenod, M. & Do, K. Q. Early-life
insults impair parvalbumin interneurons via oxidative stress: reversal by
N-acetylcysteine. Biol. Psychiatry 73, 574–582 (2013).

52. Porteous, D. J., Millar, J. K., Brandon, N. J. & Sawa, A. DISC1 at 10: connecting
psychiatric genetics and neuroscience. Trends Mol. Med. 17, 699–706 (2011).

53. Ma, T. M. et al. Pathogenic disruption of DISC1-serine racemase binding elicits
schizophrenia-like behavior via D-serine depletion. Mol. Psychiatry 18,
557–567 (2013).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7761

12 NATURE COMMUNICATIONS | 6:6761 | DOI: 10.1038/ncomms7761 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


54. Wei, J. et al. Regulation of N-Methyl-D-aspartate receptors by disrupted-in-
schizophrenia-1. Biol. Psychiatry 75, 414–424 (2013).

55. Monin, A. et al. Glutathione deficit impairs myelin maturation: relevance
for white matter integrity in schizophrenia patients. Mol. Psychiatry.
doi:10.1038/mp.201488 (2014).

56. Cabungcal, J. H. et al. Juvenile antioxidant treatment prevents adult deficits in a
developmental model of schizophrenia. Neuron 83, 1073–1084 (2014).

57. Janaky, R. et al. Glutathione and signal transduction in the mammalian CNS.
J. Neurochem. 73, 889–902 (1999).

58. Radonjic, N. V. et al. Decreased glutathione levels and altered antioxidant
defense in an animal model of schizophrenia: long-term effects of perinatal
phencyclidine administration. Neuropharmacology 58, 739–745 (2010).

59. da Silva, F. C. et al. Behavioral alterations and pro-oxidant effect of a single
ketamine administration to mice. Brain Res. Bull. 83, 9–15 (2010).

60. Qiu, J. et al. Mitochondrial calcium uniporter Mcu controls excitotoxicity and is
transcriptionally repressed by neuroprotective nuclear calcium signals. Nat.
Commun. 4, 2034 (2013).

61. Puddifoot, C. et al. PGC-1alpha negatively regulates extrasynaptic NMDAR
activity and excitotoxicity. J. Neurosci. 32, 6995–7000 (2012).

62. Villunger, A. et al. p53- and drug-induced apoptotic responses mediated by
BH3-only proteins puma and noxa. Science 302, 1036–1038 (2003).

63. Soriano, F. X. et al. Induction of sulfiredoxin expression and reduction of
peroxiredoxin hyperoxidation by the neuroprotective Nrf2 activator 3H-1,2-
dithiole-3-thione. J. Neurochem. 107, 533–543 (2008).

64. Spain, A. et al. Mild fluid percussion injury in mice produces evolving selective
axonal pathology and cognitive deficits relevant to human brain injury. J.
Neurotrauma 27, 1429–1438 (2010).

65. Griffith, O. W. Determination of glutathione and glutathione disulfide using
glutathione reductase and 2-vinylpyridine. Anal. Biochem. 106, 207–212
(1980).

66. Kamencic, H., Lyon, A., Paterson, P. G. & Juurlink, B. H. Monochlorobimane
fluorometric method to measure tissue glutathione. Anal. Biochem. 286, 35–37
(2000).

67. White, C. C., Viernes, H., Krejsa, C. M., Botta, D. & Kavanagh, T. J.
Fluorescence-based microtiter plate assay for glutamate-cysteine ligase activity.
Anal. Biochem. 318, 175–180 (2003).

68. Tate, S. S. & Meister, A. Serine-borate complex as a transition-state inhibitor of
gamma-glutamyl transpeptidase. Proc. Natl Acad. Sci. USA 75, 4806–4809
(1978).

69. Orwar, O., Fishman, H. A., Ziv, N. E., Scheller, R. H. & Zare, R. N. Use of
2,3-naphthalenedicarboxaldehyde derivatization for single-cell analysis of

glutathione by capillary electrophoresis and histochemical localization by
fluorescence microscopy. Anal. Chem. 67, 4261–4268 (1995).

70. Flohe, L. & Gunzler, W. A. Assays of glutathione peroxidase. Methods Enzymol.
105, 114–121 (1984).

Acknowledgements
We thank Michael Sporn for supplying CDDOTFEA, Naomi Fukagawa and Shyam Biswal
for plasmids and Andreas Strasser for the Puma-null founder mice supplied to the
laboratory of Aviva Tolkovsky and utilized by her coworker Michael Fricker (co-author).
We also thank Aviva Tolkovsky for advice on the project. This work was supported by
the UK Medical Research Council, the Biotechnology and Biological Sciences Research
Council, the Wellcome Trust, the German Research Foundation (SFB665), ‘NPlast’
Marie-Curie Initial Training Network, and the Sonnenfeld Stiftung and the Berlin
Institute of Health (BIH).

Author contributions
G.E.H. conceived the project. G.E.H., P.S.B. and T.H.G. designed the research. P.S.B.,
K.F.S.B., P.H., A.M.K., M.F., D.T., S.P.G. and G.E.H. performed the research. P.S.B.,
K.F.S.B., P.H. and G.E.H. analysed the data. S.P.C. contributed reagents and
materials. G.E.H. wrote the manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Baxter, P. S. et al. Synaptic NMDA receptor activity is
coupled to the transcriptional control of the glutathione system. Nat. Commun. 6:6761
doi: 10.1038/ncomms7761 (2015).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7761 ARTICLE

NATURE COMMUNICATIONS | 6:6761 | DOI: 10.1038/ncomms7761 | www.nature.com/naturecommunications 13

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	Neuronal GSH represses Puma-dependent &!QJ;apoptosis
	Active neurons have a greater requirement for GSH
	Active neurons use more GSH

	Figure™1The GSH system is a major defense against Puma-dependent oxidative stress-induced apoptosis in developing cortical neurons.(a,b) Inhibition of GCL activity with BSO treatment depletes cortical neurons of glutathione. Cortical neurons were treated 
	Activity induces GSH biosynthesis and recycling

	Figure™2Electrically active neurons utilize more GSH and upregulate GSH peroxidase activity.(a,b) Synaptic activity does not alter steady-state basal GSH levels in unstressed neurons. Cortical neurons were stimulated with BiCsol4-AP for 24thinsph, after w
	Figure™3Synaptic activity boosts GSH biosynthesis and recycling.(a) NMDAR blockade inhibits the maintenance of GSH levels by synaptic activity. Neurons were treated for 24thinsph as indicated and the rate of decline in GS-bimane fluorescence induced by 10
	Figure™4Cooperation between synaptic activity and astrocytic Nrf2 activators in supporting neuronal GSH levels.(a,b) The Nrf2 activator CDDOTFEA induces Gclc expression and GCL activity in astrocytes but not in neurons. Regular astrocyte-containing (AC) c
	Cooperation between activity and astrocytic Nrf2
	In vivo NMDAR blockade represses GSH biosynthesis
	Rescue of degeneration triggered by in™vivo MK-801

	Figure™5Deleterious effects of NMDAR blockade in™vivo are due to Gclc transcriptional repression.(a) Blockade of NMDARs causes a reduction of cortical GSH content in™vivo. Cortical GSH levels measured in P6 rat pups 24thinsph after the first injection. as
	Discussion
	Methods
	Neuronal culture and synaptic activation
	In vivo MK-801 administration
	Glutathione and GST assays
	GCL assay
	Glutathione peroxidase assay
	Glutathione reductase assay
	MitoSOX imaging
	RNA isolation and quantitative RT-PCR
	Transfection and reporter assays
	Western blotting
	Statistical analysis and equipment settings

	DringenR.HirrlingerJ.Glutathione pathways in the brainBiol. Chem.3845055162003Fernandez-FernandezS.AlmeidaA.BolanosJ. P.Antioxidant and bioenergetic coupling between neurons and astrocytesBiochem. J.4433112012JohnsonW. M.Wilson-DelfosseA. L.MieyalJ. J.Dys
	We thank Michael Sporn for supplying CDDOTFEA, Naomi Fukagawa and Shyam Biswal for plasmids and Andreas Strasser for the Puma-null founder mice supplied to the laboratory of Aviva Tolkovsky and utilized by her coworker Michael Fricker (co-author). We also
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




