41 research outputs found

    Rational Redesign of Glucose Oxidase for Improved Catalytic Function and Stability

    Get PDF
    Glucose oxidase (GOx) is an enzymatic workhorse used in the food and wine industries to combat microbial contamination, to produce wines with lowered alcohol content, as the recognition element in amperometric glucose sensors, and as an anodic catalyst in biofuel cells. It is naturally produced by several species of fungi, and genetic variants are known to differ considerably in both stability and activity. Two of the more widely studied glucose oxidases come from the species Aspergillus niger (A. niger) and Penicillium amagasakiense (P. amag.), which have both had their respective genes isolated and sequenced. GOx from A. niger is known to be more stable than GOx from P. amag., while GOx from P. amag. has a six-fold superior substrate affinity (KM) and nearly four-fold greater catalytic rate (kcat). Here we sought to combine genetic elements from these two varieties to produce an enzyme displaying both superior catalytic capacity and stability. A comparison of the genes from the two organisms revealed 17 residues that differ between their active sites and cofactor binding regions. Fifteen of these residues in a parental A. niger GOx were altered to either mirror the corresponding residues in P. amag. GOx, or mutated into all possible amino acids via saturation mutagenesis. Ultimately, four mutants were identified with significantly improved catalytic activity. A single point mutation from threonine to serine at amino acid 132 (mutant T132S, numbering includes leader peptide) led to a three-fold improvement in kcat at the expense of a 3% loss of substrate affinity (increase in apparent KM for glucose) resulting in a specify constant (kcat/KM) of 23.8 (mM−1 · s−1) compared to 8.39 for the parental (A. niger) GOx and 170 for the P. amag. GOx. Three other mutant enzymes were also identified that had improvements in overall catalysis: V42Y, and the double mutants T132S/T56V and T132S/V42Y, with specificity constants of 31.5, 32.2, and 31.8 mM−1 · s−1, respectively. The thermal stability of these mutants was also measured and showed moderate improvement over the parental strain

    Non-contact universal sample presentation for room temperature macromolecular crystallography using acoustic levitation

    Get PDF
    Macromolecular Crystallography is a powerful and valuable technique to assess protein structures. Samples are commonly cryogenically cooled to minimise radiation damage effects from the X-ray beam, but low temperatures hinder normal protein functions and this procedure can introduce structural artefacts. Previous experiments utilising acoustic levitation for beamline science have focused on Langevin horns which deliver significant power to the confined droplet and are complex to set up accurately. In this work, the low power, portable TinyLev acoustic levitation system is used in combination with an approach to dispense and contain droplets, free of physical sample support to aid protein crystallography experiments. This method facilitates efficient X-ray data acquisition in ambient conditions compatible with dynamic studies. Levitated samples remain free of interference from fixed sample mounts, receive negligible heating, do not suffer significant evaporation and since the system occupies a small volume, can be readily installed at other light sources

    Molecular basis for GTP recognition by light-activated guanylate cyclase RhGC

    No full text
    Cyclic guanosine 3',5'-monophosphate (cGMP) is an intracellular signaling molecule involved in many sensory and developmental processes. Synthesis of cGMP from GTP is catalyzed by guanylate cyclase (GC) in a reaction analogous to cAMP formation by adenylate cyclase (AC). Although detailed structural information is available on the catalytic region of nucleotidyl cyclases (NCs) in various states, these atomic models do not provide a sufficient explanation for the substrate selectivity between GC and AC family members. Detailed structural information on the GC domain in its active conformation is largely missing and no crystal structure of a GTP-bound wild-type GC domain has been published to date. Here, we describe the crystal structure of the catalytic domain of rhodopsin-GC (RhGC) from Catenaria anguillulae in complex with GTP at 1.7 Ã… resolution. Our study reveals the organization of a eukaryotic GC domain in its active conformation. We observe that the binding mode of the substrate GTP is similar to that of AC-ATP interaction, although surprisingly not all of the interactions predicted to be responsible for base recognition are present. The structure provides insights into potential mechanisms of substrate discrimination and activity regulation that may be common to all class III purine NCs

    New Ventures. Profile of Joanne Morency, owner of Morency Marketing in Gray.

    No full text
    New Ventures. Profile of Joanne Morency, owner of Morency Marketing in Gray

    Crystal structure of isopenicillin <i>N</i> synthase is the first from a new structural family of enzymes

    No full text
    Penicillin antibiotics are all produced from fermentation-derived penicillins because their chemical synthesis is not commercially viable. The key step in penicillin biosynthesis, in which both the beta-lactam and thiazolidine rings of the nucleus are created, is mediated by isopenicillin N synthase (IPNS), which binds ferrous iron and uses dioxygen as a cosubstrate. In a unique enzymatic step, with no chemical precedent, IPNS catalyses the transfer of four hydrogen atoms from its tripeptide substrate to dioxygen forming, in a single reaction, the complete bicyclic nucleus of the penicillins. We now report the structure of IPNS complexed with manganese, which reveals the active site is unusually buried within a 'jelly-roll' motif and lined by hydrophobic residues, and suggest how this structure permits the process of penicillin formation. Sequence analyses indicate IPNS, 1-aminocyclopropane-1-carboxylic acid oxidase and many of the 2-oxo-acid-dependent oxygenases contain a conserved jelly-roll motif, forming a new structural family of enzymes
    corecore