99 research outputs found

    Sea breeze forcing of estuary turbulence and air-water CO2 exchange

    Get PDF
    The sea breeze is often a dominant meteorological feature at the coastline, but little is known about its estuarine impacts. Measurements at an anchored catamaran and meteorological stations along the Hudson River and New York Bay estuarine system are used to illustrate some basic characteristics and impacts of the feature. The sea breeze propagates inland, arriving in phase with peak solar forcing at seaward stations, but several hours later at up-estuary stations. Passage of the sea breeze front raises the water-to-air CO2 flux by 1–2 orders of magnitude, and drives turbulence comparable to spring tide levels in the upper meter of the water column, where most primary productivity occurs in this highly turbid system. Modeling and observational studies often use remotely-measured winds to compute air-water fluxes (e.g., momentum, CO2), and this leads to a factor of two flux error on sea breeze days during the study

    Analysis of a Nuclear Accident: Fission and Activation Product Releases from the Fukushima Daiichi Nuclear Facility as Remote Indicators of Source Identification, Extent of Release, and State of Damaged Spent Nuclear Fuel

    Get PDF
    Evidence of the release Pu from the Fukushima Daiichi nuclear power station to the local environment and surrounding communities and estimates on fraction of total fuel inventory release

    Tidal and atmospheric influences on near-surface turbulence in an estuary

    Get PDF
    Estuarine near-surface turbulence is important for transport, mixing, and air-water exchanges of many important constituents but has rarely been studied in detail. Here, we analyze a unique set of estuarine observations of in situ atmospheric and full water column measurements, estimated air-sea exchanges, and acoustic measurements of several terms in the turbulent kinetic energy (TKE) budget. Observations from a 5.1 m deep site in the Hudson River estuary include dissipation at 50 cm depth (ɛ50), as well as profiles of TKE, shear production of TKE (P), and net turbulent vertical TKE transport (TD). Regressions suggest that the principal controlling factor for ɛ50 was wind (through the surface shear velocity, U*) and that the surface heat flux and tidal currents played a secondary role. For ebb spring tides, the TKE budget at 50 cm depth was closed within noise levels. Ebbs had high ɛ50 due to local shear production, which nearly balanced ɛ50. Floods had TD approaching P in the upper water column but generally weak near-surface shear and turbulence. Examining buoyancy fluxes that impact near-surface stratification and can indirectly control turbulence, solar heat input and tidal straining caused similar buoyancy fluxes on a sunny, calm weather day, promoting ebb tide restratification. Wind-driven mixing was found to dominate during a fall season storm event, and strong overnight heat loss after the storm helped delay restratification afterward. These results demonstrate the utility of combining detailed air-sea interaction and physical oceanographic measurements in future estuary studies

    Ampere Hour as a Predictor of Cardiac Resynchronization Defibrillator Pulse Generator Battery Longevity: A Multicenter Study

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/122444/1/pace12831_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/122444/2/pace12831.pd

    Automated UF6 Cylinder Enrichment Assay: Status of the Hybrid Enrichment Verification Array (HEVA) Project: POTAS Phase II

    Get PDF
    Pacific Northwest National Laboratory (PNNL) intends to automate the UF6 cylinder nondestructive assay (NDA) verification currently performed by the International Atomic Energy Agency (IAEA) at enrichment plants. PNNL is proposing the installation of a portal monitor at a key measurement point to positively identify each cylinder, measure its mass and enrichment, store the data along with operator inputs in a secure database, and maintain continuity of knowledge on measured cylinders until inspector arrival. This report summarizes the status of the research and development of an enrichment assay methodology supporting the cylinder verification concept. The enrichment assay approach exploits a hybrid of two passively-detected ionizing-radiation signatures: the traditional enrichment meter signature (186-keV photon peak area) and a non-traditional signature, manifested in the high-energy (3 to 8 MeV) gamma-ray continuum, generated by neutron emission from UF6. PNNL has designed, fabricated, and field-tested several prototype assay sensor packages in an effort to demonstrate proof-of-principle for the hybrid assay approach, quantify the expected assay precision for various categories of cylinder contents, and assess the potential for unsupervised deployment of the technology in a portal-monitor form factor. We refer to recent sensor-package prototypes as the Hybrid Enrichment Verification Array (HEVA). The report provides an overview of the assay signatures and summarizes the results of several HEVA field measurement campaigns on populations of Type 30B UF6 cylinders containing low-enriched uranium (LEU), natural uranium (NU), and depleted uranium (DU). Approaches to performance optimization of the assay technique via radiation transport modeling are briefly described, as are spectroscopic and data-analysis algorithms

    Comparing aerosol number and mass exhalation rates from children and adults during breathing, speaking and singing

    Get PDF
    Aerosol particles of respirable size are exhaled when individuals breathe, speak and sing and can transmit respiratory pathogens between infected and susceptible individuals. The COVID-19 pandemic has brought into focus the need to improve the quantification of the particle number and mass exhalation rates as one route to provide estimates of viral shedding and the potential risk of transmission of viruses. Most previous studies have reported the number and mass concentrations of aerosol particles in an exhaled plume. We provide a robust assessment of the absolute particle number and mass exhalation rates from measurements of minute ventilation using a non-invasive Vyntus Hans Rudolf mask kit with straps housing a rotating vane spirometer along with measurements of the exhaled particle number concentrations and size distributions. Specifically, we report comparisons of the number and mass exhalation rates for children (12–14 years old) and adults (19–72 years old) when breathing, speaking and singing, which indicate that child and adult cohorts generate similar amounts of aerosol when performing the same activity. Mass exhalation rates are typically 0.002–0.02 ng s(−1) from breathing, 0.07–0.2 ng s(−1) from speaking (at 70–80 dBA) and 0.1–0.7 ng s(−1) from singing (at 70–80 dBA). The aerosol exhalation rate increases with increasing sound volume for both children and adults when both speaking and singing
    • …
    corecore