23 research outputs found

    Persistent Place-Making in Prehistory: the Creation, Maintenance, and Transformation of an Epipalaeolithic Landscape

    Get PDF
    Most archaeological projects today integrate, at least to some degree, how past people engaged with their surroundings, including both how they strategized resource use, organized technological production, or scheduled movements within a physical environment, as well as how they constructed cosmologies around or created symbolic connections to places in the landscape. However, there are a multitude of ways in which archaeologists approach the creation, maintenance, and transformation of human-landscape interrelationships. This paper explores some of these approaches for reconstructing the Epipalaeolithic (ca. 23,000–11,500 years BP) landscape of Southwest Asia, using macro- and microscale geoarchaeological approaches to examine how everyday practices leave traces of human-landscape interactions in northern and eastern Jordan. The case studies presented here demonstrate that these Epipalaeolithic groups engaged in complex and far-reaching social landscapes. Examination of the Early and Middle Epipalaeolithic (EP) highlights that the notion of “Neolithization” is somewhat misleading as many of the features we use to define this transition were already well-established patterns of behavior by the Neolithic. Instead, these features and practices were enacted within a hunter-gatherer world and worldview

    DNA damage by lipid peroxidation products: implications in cancer, inflammation and autoimmunity

    Get PDF
    Oxidative stress and lipid peroxidation (LPO) induced by inflammation, excess metal storage and excess caloric intake cause generalized DNA damage, producing genotoxic and mutagenic effects. The consequent deregulation of cell homeostasis is implicated in the pathogenesis of a number of malignancies and degenerative diseases. Reactive aldehydes produced by LPO, such as malondialdehyde, acrolein, crotonaldehyde and 4-hydroxy-2-nonenal, react with DNA bases, generating promutagenic exocyclic DNA adducts, which likely contribute to the mutagenic and carcinogenic effects associated with oxidative stress-induced LPO. However, reactive aldehydes, when added to tumor cells, can exert an anticancerous effect. They act, analogously to other chemotherapeutic drugs, by forming DNA adducts and, in this way, they drive the tumor cells toward apoptosis. The aldehyde-DNA adducts, which can be observed during inflammation, play an important role by inducing epigenetic changes which, in turn, can modulate the inflammatory process. The pathogenic role of the adducts formed by the products of LPO with biological macromolecules in the breaking of immunological tolerance to self antigens and in the development of autoimmunity has been supported by a wealth of evidence. The instrumental role of the adducts of reactive LPO products with self protein antigens in the sensitization of autoreactive cells to the respective unmodified proteins and in the intermolecular spreading of the autoimmune responses to aldehyde-modified and native DNA is well documented. In contrast, further investigation is required in order to establish whether the formation of adducts of LPO products with DNA might incite substantial immune responsivity and might be instrumental for the spreading of the immunological responses from aldehyde-modified DNA to native DNA and similarly modified, unmodified and/or structurally analogous self protein antigens, thus leading to autoimmunity

    Methylation status of p14ARF and p16INK4a as detected in pancreatic secretions

    No full text
    The clinical management of pancreatic disease is often hampered by a lack of tissue diagnosis. Endoscopic pancreatography offers the opportunity to investigate exfoliated cells. However, the significance of mere cytological investigation is compromised by an insufficient sensitivity. The evaluation of the molecular background of carcinogenesis hopefully is capable of providing more sensitive diagnostic markers. The p16INK4a-/retinoblastoma tumour-suppressive pathway has been shown to be involved in the development of near to all pancreatic neoplasms. p14ARF is another tumour suppressor located in the immediate neighbourhood of p16INK4a. Promoter methylation has been demonstrated to be a major inactivating mechanism of both genes. We sought to further evaluate the role of the gene locus INK4a methylation status in the endoscopic differentiation of chronic inflammatory and neoplastic pancreatic disease. Pancreatic fluid specimens of 61 patients with either pancreatic carcinoma (PCA: 39), chronic pancreatitis (CP: 16) or a normal pancreatogram (NAD: 6) were retrieved. In order to detect methylation of either the p14ARF or the p16INK4a promoter a methylation-specific PCR protocol was applied. While 19 out of 39 patients with PCA showed p16 promoter methylation (49%), none of the 16 patients with CP revealed p16 promoter methylation. p14ARF methylation was found in a lower percentage of PCA specimens and in none of the samples of patients with CP. These results suggest a specific significance of INK4a for the development of malignant pancreatic disease. Our data further indicate a potential role for INK4a methylation as a diagnostic marker in the endoscopic differentiation of benign and malignant pancreatic disease
    corecore