954 research outputs found

    Regret Bounds for Reinforcement Learning with Policy Advice

    Get PDF
    In some reinforcement learning problems an agent may be provided with a set of input policies, perhaps learned from prior experience or provided by advisors. We present a reinforcement learning with policy advice (RLPA) algorithm which leverages this input set and learns to use the best policy in the set for the reinforcement learning task at hand. We prove that RLPA has a sub-linear regret of \tilde O(\sqrt{T}) relative to the best input policy, and that both this regret and its computational complexity are independent of the size of the state and action space. Our empirical simulations support our theoretical analysis. This suggests RLPA may offer significant advantages in large domains where some prior good policies are provided

    University Wind Ensemble

    Get PDF

    Is there a Future for Regional Banks and Regional Exchanges? The Strategies of Selected Austrian Finance Institutions

    Full text link
    1) D.T. Llewellyn, " The future for small & regional banks in Europe" 2) R. Ortner, " What future for regional banks?" 3) H. Stepic, " The Strategy of RZB in Central and Eastern Europe" 4) St. K. Zapotocky, " The challenges and chances of regional exchanges" It has been argued that the combination of technological advance, the European Single Market, the advent of EMU and, more generally, the reality of a global financial community, is undermining the competitive position of small, regional financial organisations, be they banks, stock exchanges or other financial entities. This line of argument leads to the conclusion that there is no viable business future for the small. This SUERF Study offers points of view to the contrary, both from the academic and " practitioners" angle. Professor David Llewellyn contributes the academic view, strongly arguing that size per se is not the issue but rather that efficient, well focused small and medium-sized financial institutions remain viable. Representatives of three regional financial institutions in Austria were asked to discuss elements of their business strategy to substantiate their belief in the viability of their institution's future. The contribution by Reinhard Ortner (Erste Bank) is based on a talk he gave on the occasion of the 22nd SUERF Colloquium in Vienna in 2000, and that of Helmut Stepic (Raiffeisen Zentralbank) on a speech at the Alpbacher Banking Seminar in 2001. The consolidation and concentration process has, of course, also engulfed stock exchanges and many of the small ones have already been pronounced terminally ill. Stefan Zapotocky (Wiener Börse AG) is firm in his view that regional exchanges will have a viable future catering for regional financing needs. His contribution is based on a presentation at the SUERF Salzburg Seminar of 2002, which dealt with the future of regional exchanges

    A geometrical angle on Feynman integrals

    Get PDF
    A direct link between a one-loop N-point Feynman diagram and a geometrical representation based on the N-dimensional simplex is established by relating the Feynman parametric representations to the integrals over contents of (N-1)-dimensional simplices in non-Euclidean geometry of constant curvature. In particular, the four-point function in four dimensions is proportional to the volume of a three-dimensional spherical (or hyperbolic) tetrahedron which can be calculated by splitting into birectangular ones. It is also shown that the known formula of reduction of the N-point function in (N-1) dimensions corresponds to splitting the related N-dimensional simplex into N rectangular ones.Comment: 47 pages, including 42 pages of the text (in plain Latex) and 5 pages with the figures (in a separate Latex file, requires axodraw.sty) a note and three references added, minor problem with notation fixe

    Development of an Optimization-Based Atomistic-to-Continuum Coupling Method

    Full text link
    Atomistic-to-Continuum (AtC) coupling methods are a novel means of computing the properties of a discrete crystal structure, such as those containing defects, that combine the accuracy of an atomistic (fully discrete) model with the efficiency of a continuum model. In this note we extend the optimization-based AtC, formulated in arXiv:1304.4976 for linear, one-dimensional problems to multi-dimensional settings and arbitrary interatomic potentials. We conjecture optimal error estimates for the multidimensional AtC, outline an implementation procedure, and provide numerical results to corroborate the conjecture for a 1D Lennard-Jones system with next-nearest neighbor interactions.Comment: 12 pages, 3 figure

    Responsibility & Risk: Operationalizing comprehensive climate risk layering in Austria among multiple actors (RESPECT)

    Get PDF
    Damages caused by climate and weather extremes, such as floods and droughts, have increased over the last few decades and will likely broaden with the progression of climate change and socioeconomic development. Such climate-related risks are already being governed within the framework of natural disaster risk management, as well as climate change adaptation. However, to manage these climate risks more effectively it is necessary to link these two domains under the umbrella of Climate Risk Management (CRM)

    Large-scale risk assessment on snow avalanche hazard in alpine regions

    Get PDF
    Snow avalanches are recurring natural hazards that affect the population and infrastructure in mountainous regions, such as in the recent avalanche winters of 2018 and 2019, when considerable damage was caused by avalanches throughout the Alps. Hazard decision makers need detailed information on the spatial distribution of avalanche hazards and risks to prioritize and apply appropriate adaptation strategies and mitigation measures and thus minimize impacts. Here, we present a novel risk assessment approach for assessing the spatial distribution of avalanche risk by combining large-scale hazard mapping with a state-of-the-art risk assessment tool, where risk is understood as the product of hazard, exposure and vulnerability. Hazard disposition is modeled using the large-scale hazard indication mapping method RAMMS::LSHIM (Rapid Mass Movement Simulation::Large-Scale Hazard Indication Mapping), and risks are assessed using the probabilistic Python-based risk assessment platform CLIMADA, developed at ETH Zürich. Avalanche hazard mapping for scenarios with a 30-, 100- and 300-year return period is based on a high-resolution terrain model, 3 d snow depth increase, automatically determined potential release areas and protection forest data. Avalanche hazard for 40 000 individual snow avalanches is expressed as avalanche intensity, measured as pressure. Exposure is represented by a detailed building layer indicating the spatial distribution of monetary assets. The vulnerability of buildings is defined by damage functions based on the software EconoMe, which is in operational use in Switzerland. The outputs of the hazard, exposure and vulnerability analyses are combined to quantify the risk in spatially explicit risk maps. The risk considers the probability and intensity of snow avalanche occurrence, as well as the concentration of vulnerable, exposed buildings. Uncertainty and sensitivity analyses were performed to capture inherent variability in the input parameters. This new risk assessment approach allows us to quantify avalanche risk over large areas and results in maps displaying the spatial distribution of risk at specific locations. Large-scale risk maps can assist decision makers in identifying areas where avalanche hazard mitigation and/or adaption is needed.</p

    On the variational limits of lattice energies on prestrained elastic bodies

    Full text link
    We study the asymptotic behaviour of the discrete elastic energies in presence of the prestrain metric GG, assigned on the continuum reference configuration Ω\Omega. When the mesh size of the discrete lattice in Ω\Omega goes to zero, we obtain the variational bounds on the limiting (in the sense of Γ\Gamma-limit) energy. In case of the nearest-neighbour and next-to-nearest-neibghour interactions, we derive a precise asymptotic formula, and compare it with the non-Euclidean model energy relative to GG

    Quantum Simulations of Extended Hubbard Models with Dipolar Crystals

    Full text link
    In this paper we study the realization of lattice models in mixtures of atomic and dipolar molecular quantum gases. We consider a situation where polar molecules form a self-assembled dipolar lattice, in which atoms or molecules of a second species can move and scatter. We describe the system dynamics in a master equation approach in the Brownian motion limit of slow particles and fast phonons, which we find appropriate for our system. In a wide regime of parameters, the reduced dynamics of the particles leads to physical realizations of extended Hubbard models with tuneable long-range interactions mediated by crystal phonons. This extends the notion of quantum simulation of strongly correlated systems with cold atoms and molecules to include phonon-dynamics, where all coupling parameters can be controlled by external fields.Comment: 44 pages, 14 figure
    • …
    corecore