114 research outputs found

    Spectral unmixing of multiply stained fluorescence samples T

    Get PDF
    The widespread use of fluorescence microscopy along with the vast library of available fluorescent stains and staining methods has been extremely beneficial to researchers in many fields, ranging from material sciences to plant biology. In clinical diagnostics, the ability to combine different markers in a given sample allows the simultaneous detection of the expression of several different molecules, which in turn provides a powerful diagnostic tool for pathologists, allowing a better classification of the sample at hand. The correct detection and separation of multiple stains in a sample is achieved not only by the biochemical and optical properties of the markers, but also by the use of appropriate hardware and software tools. In this chapter, we will review and compare these tools along with their advantages and limitations

    Continuous synthesis of drug-loaded nanoparticles using microchannel emulsification and numerical modeling: Effect of passive mixing

    Get PDF
    By using interdigital microfluidic reactors, monodisperse poly(d, l lactic-co-glycolic acid) nanoparticles (NPs) can be produced in a continuous manner and at a large scale (~10 g/h). An optimized synthesis protocol was obtained by selecting the appropriated passive mixer and fluid flow conditions to produce monodisperse NPs. A reduced NP polydispersity was obtained when using the microfluidic platform compared with the one obtained with NPs produced in a conventional discontinuous batch reactor. Cyclosporin, an immunosuppressant drug, was used as a model to validate the efficiency of the microfluidic platform to produce drug-loaded monodisperse poly(d, l lactic-co-glycolic acid) NPs. The influence of the mixer geometries and temperatures were analyzed, and the experimental results were corroborated by using computational fluid dynamic three-dimensional simulations. Flow patterns, mixing times, and mixing efficiencies were calculated, and the model supported with experimental results. The progress of mixing in the interdigital mixer was quantified by using the volume fractions of the organic and aqueous phases used during the emulsification–evaporation process. The developed model and methods were applied to determine the required time for achieving a complete mixing in each microreactor at different fluid flow conditions, temperatures, and mixing rates

    Using Wavelets to reject background in Dark Matter experiments

    Full text link
    A method based on wavelet techniques has been developed and applied to background rejection in the data of the IGEX dark matter experiment. The method is presented and described in some detail to show how it efficiently rejects events coming from noise and microphonism through a mathematical inspection of their recorded pulse shape. The result of the application of the method to the last data of IGEX is presented.Comment: 14 pages, 8 figures. Submitted to Astrop. Phy

    Neutron background at the Canfranc Underground Laboratory and its contribution to the IGEX-DM dark matter experiment

    Full text link
    A quantitative study of the neutron environment in the Canfranc Underground Laboratory has been performed. The analysis is based on a complete set of simulations and, particularly, it is focused on the IGEX-DM dark matter experiment. The simulations are compared to the IGEX-DM low energy data obtained with different shielding conditions. The results of the study allow us to conclude, with respect to the IGEX-DM background, that the main neutron population, coming from radioactivity from the surrounding rock, is practically eliminated after the implementation of a suitable neutron shielding. The remaining neutron background (muon-induced neutrons in the shielding and in the rock) is substantially below the present background level thanks to the muon veto system. In addition, the present analysis gives us a further insight on the effect of neutrons in other current and future experiments at the Canfranc Underground Laboratory. The comparison of simulations with the body of data available has allowed to set the flux of neutrons from radioactivity of the Canfranc rock, (3.82 +- 0.44) x 10^{-6} cm^{-2} s^{-1}, as well as the flux of muon-induced neutrons in the rock, (1.73 +- 0.22(stat) \+- 0.69(syst)) x 10^{-9} cm^{-2} s^{-1}, or the rate of neutron production by muons in the lead shielding, (4.8 +- 0.6 (stat) +- 1.9 (syst)) x 10^{-9} cm^{-3} s^{-1}.Comment: 17 pages, 8 figures, elsart document class; final version to appear in Astroparticle Physic

    Status of the ANAIS Dark Matter Project at the Canfranc Underground Laboratory

    Full text link
    The ANAIS experiment aims at the confirmation of the DAMA/LIBRA signal. A detailed analysis of two NaI(Tl) crystals of 12.5 kg each grown by Alpha Spectra will be shown: effective threshold at 1 keVee is at reach thanks to outstanding light collection and robust PMT noise filtering protocols and the measured background is well understood down to 3 keVee, having quantified K, U and Th content and cosmogenic activation in the crystals. A new detector was installed in Canfranc in March 2015 together with the two previous modules and preliminary characterization results will be presented. Finally, the status and expected sensitivity of the full experiment with 112 kg will be reviewed.Comment: Contributed to the 11th Patras Workshop on Axions, WIMPs and WISPs, Zaragoza, June 22 to 26, 201

    Analysis of backgrounds for the ANAIS-112 dark matter experiment

    Get PDF
    The ANAIS (Annual modulation with NaI(Tl) Scintillators) experiment aims at the confirmation or refutation of theDAMA/LIBRA positive annual modulation signal in the low energy detection rate, using the same target and technique, at the Canfranc Underground Laboratory (LSC) in Spain. ANAIS-112, consisting of nine 12.5 kg NaI(Tl) modules produced by Alpha Spectra Inc. in a 3x3matrix configuration, is taking data smoothly in "dark matter search" mode since August, 2017, after a commissioning phase and operation of the first detectors during the last years in various setups. A large effort has been carried out withinANAIS to characterize the background of sodium iodide detectors, before unblinding the data and performing the first annual modulation analysis. Here, the background models developed for all the nine ANAIS-112 detectors are presented. Measured spectra from threshold to high energy in different conditions are well described by the models based on quantified activities independently estimated following several approaches. In the region from 1 to 6 keVee the measured, efficiency corrected background level is 3.58+-0.02 keV-1 kg-1 day-1; NaI crystal bulk contamination is the dominant background source being 210Pb, 40K, 22Na and 3H contributions the most relevant ones. This background level, added to the achieved 1 keVee analysis threshold (thanks to the outstanding light collection and robust filtering procedures developed), allow ANAIS-112 to be sensitive to the modulation amplitude measured by DAMA/LIBRA, and able to explore at three sigma level in 5 years the WIMP parameter region singled out by this experiment.Comment: Final version for publicatio
    • …
    corecore