14,182 research outputs found

    Coarse-Graining and Renormalization of Atomistic Binding Relations and Universal Macroscopic Cohesive Behavior

    Full text link
    We present two approaches for coarse-graining interplanar potentials and determining the corresponding macroscopic cohesive laws based on energy relaxation and the renormalization group. We analyze the cohesive behavior of a large---but finite---number of interatomic planes and find that the macroscopic cohesive law adopts a universal asymptotic form. The universal form of the macroscopic cohesive law is an attractive fixed point of a suitably-defined renormalization-group transformation.Comment: 15 pages, 6 figures, submitted to the Journal of the Mechanics and Physics of Solid

    Occurrence and mineral chemistry of high pressure phases, Portrillo basalt, southcentral New Mexico

    Get PDF
    Inclusions of clinopyroxenite, kaersutiteclinopyroxenite, kaersutite-rich inclusions, wehrlite and olivine-clinopyroxenite together with megacrysts of feldspar, kaersutite and spinel are found loose on the flanks of cinder cones, as inclusions within lava flows and within the cores of volcanic bombs in the Quaternary alkali-olivine basalt of the West Potrillo Mountains, southcentral New Mexico. Based on petrological and geochemical evidence the megacysts are interpreted to be phenocrysts which formed at great depth rather that xenocrysts of larger crystal aggregates. These large crystals are believed to have formed as stable phases at high temperature and pressure and have partially reacted with the basalt to produce subhedral to anhedral crystal boundaries. It can be demonstrated that the mafic and ultramafic crystal aggregates were derived from an alkali-basalt source rock generated in the mantle. The inclusions are believed to represent a cumulus body or bodies injected within the lower crust or upper mantle

    The Optimal Uncertainty Algorithm in the Mystic Framework

    Get PDF
    We have recently proposed a rigorous framework for Uncertainty Quantification (UQ) in which UQ objectives and assumption/information set are brought into the forefront, providing a framework for the communication and comparison of UQ results. In particular, this framework does not implicitly impose inappropriate assumptions nor does it repudiate relevant information. This framework, which we call Optimal Uncertainty Quantification (OUQ), is based on the observation that given a set of assumptions and information, there exist bounds on uncertainties obtained as values of optimization problems and that these bounds are optimal. It provides a uniform environment for the optimal solution of the problems of validation, certification, experimental design, reduced order modeling, prediction, extrapolation, all under aleatoric and epistemic uncertainties. OUQ optimization problems are extremely large, and even though under general conditions they have finite-dimensional reductions, they must often be solved numerically. This general algorithmic framework for OUQ has been implemented in the mystic optimization framework. We describe this implementation, and demonstrate its use in the context of the Caltech surrogate model for hypervelocity impact

    Optimal Uncertainty Quantification

    Get PDF
    We propose a rigorous framework for Uncertainty Quantification (UQ) in which the UQ objectives and the assumptions/information set are brought to the forefront. This framework, which we call Optimal Uncertainty Quantification (OUQ), is based on the observation that, given a set of assumptions and information about the problem, there exist optimal bounds on uncertainties: these are obtained as extreme values of well-defined optimization problems corresponding to extremizing probabilities of failure, or of deviations, subject to the constraints imposed by the scenarios compatible with the assumptions and information. In particular, this framework does not implicitly impose inappropriate assumptions, nor does it repudiate relevant information. Although OUQ optimization problems are extremely large, we show that under general conditions, they have finite-dimensional reductions. As an application, we develop Optimal Concentration Inequalities (OCI) of Hoeffding and McDiarmid type. Surprisingly, contrary to the classical sensitivity analysis paradigm, these results show that uncertainties in input parameters do not necessarily propagate to output uncertainties. In addition, a general algorithmic framework is developed for OUQ and is tested on the Caltech surrogate model for hypervelocity impact, suggesting the feasibility of the framework for important complex systems

    Non-equilibrium concentration fluctuations in binary liquids with realistic boundary conditions

    Full text link
    Because of the spatially long-ranged nature of spontaneous fluctuations in thermal non-equilibrium systems, they are affected by boundary conditions for the fluctuating hydrodynamic variables. In this paper we consider a liquid mixture between two rigid and impervious plates with a stationary concentration gradient resulting from a temperature gradient through the Soret effect. For liquid mixtures with a large Lewis number, we are able to obtain explicit analytical expressions for the intensity of the non-equilibrium concentration fluctuations as a function of the frequency ω\omega and the wave number qq of the fluctuations. In addition we elucidate the spatial dependence of the intensity of the non-equilibrium fluctuations responsible for a non-equilibrium Casimir effect.Comment: 9 pages, 2 figure

    Data Driven Computing with Noisy Material Data Sets

    Get PDF
    We formulate a Data Driven Computing paradigm, termed max-ent Data Driven Computing, that generalizes distance-minimizing Data Driven Computing and is robust with respect to outliers. Robustness is achieved by means of clustering analysis. Specifically, we assign data points a variable relevance depending on distance to the solution and on maximum-entropy estimation. The resulting scheme consists of the minimization of a suitably-defined free energy over phase space subject to compatibility and equilibrium constraints. Distance-minimizing Data Driven schemes are recovered in the limit of zero temperature. We present selected numerical tests that establish the convergence properties of the max-ent Data Driven solvers and solutions
    corecore