17,698 research outputs found

    Non-equilibrium concentration fluctuations in binary liquids with realistic boundary conditions

    Full text link
    Because of the spatially long-ranged nature of spontaneous fluctuations in thermal non-equilibrium systems, they are affected by boundary conditions for the fluctuating hydrodynamic variables. In this paper we consider a liquid mixture between two rigid and impervious plates with a stationary concentration gradient resulting from a temperature gradient through the Soret effect. For liquid mixtures with a large Lewis number, we are able to obtain explicit analytical expressions for the intensity of the non-equilibrium concentration fluctuations as a function of the frequency ω\omega and the wave number qq of the fluctuations. In addition we elucidate the spatial dependence of the intensity of the non-equilibrium fluctuations responsible for a non-equilibrium Casimir effect.Comment: 9 pages, 2 figure

    BCS-to-BEC crossover from the exact BCS solution

    Get PDF
    The BCS-to-BEC crossover, as well as the nature of Cooper pairs, in a superconducting and Fermi superfluid medium is studied from the exact ground state wavefunction of the reduced BCS Hamiltonian. As the strength of the interaction increases, the ground state continuously evolves from a mixed-system of quasifree fermions and pair resonances (BCS), to pair resonances and quasibound molecules (pseudogap), and finally to a system of quasibound molecules (BEC). A single unified scenario arises where the Cooper-pair wavefunction has a unique functional form. Several exact analytic expressions, such as the binding energy and condensate fraction, are derived. We compare our results with recent experiments in ultracold atomic Fermi gases.Comment: 5 pages, 4 figures. Revised version with one figure adde

    Pairing in Inhomogeneous Superconductors

    Full text link
    Starting from a t-J model, we introduce inhomogeneous terms to mimic stripes. We find that if the inhomogeneous terms break the SU(2) spin symmetry the binding between holes is tremendously enhanced in the thermodynamic limit. In any other model (including homogeneous models) the binding in the thermodynamic limit is small or neglible. By including these inhomogeneous terms we can reproduce experimental neutron scattering data. We also discuss the connection of the resulting inhomogeneity-induced superconductivity to recent experimental evidence for a linear relation between magnetic incommensurability and the superconducting transition temperature, as a function of doping.Comment: 4 pages, 2 figure

    Nonsmooth Lagrangian mechanics and variational collision integrators

    Get PDF
    Variational techniques are used to analyze the problem of rigid-body dynamics with impacts. The theory of smooth Lagrangian mechanics is extended to a nonsmooth context appropriate for collisions, and it is shown in what sense the system is symplectic and satisfies a Noether-style momentum conservation theorem. Discretizations of this nonsmooth mechanics are developed by using the methodology of variational discrete mechanics. This leads to variational integrators which are symplectic-momentum preserving and are consistent with the jump conditions given in the continuous theory. Specific examples of these methods are tested numerically, and the long-time stable energy behavior typical of variational methods is demonstrated

    TARGET: Rapid Capture of Process Knowledge

    Get PDF
    TARGET (Task Analysis/Rule Generation Tool) represents a new breed of tool that blends graphical process flow modeling capabilities with the function of a top-down reporting facility. Since NASA personnel frequently perform tasks that are primarily procedural in nature, TARGET models mission or task procedures and generates hierarchical reports as part of the process capture and analysis effort. Historically, capturing knowledge has proven to be one of the greatest barriers to the development of intelligent systems. Current practice generally requires lengthy interactions between the expert whose knowledge is to be captured and the knowledge engineer whose responsibility is to acquire and represent the expert's knowledge in a useful form. Although much research has been devoted to the development of methodologies and computer software to aid in the capture and representation of some types of knowledge, procedural knowledge has received relatively little attention. In essence, TARGET is one of the first tools of its kind, commercial or institutional, that is designed to support this type of knowledge capture undertaking. This paper will describe the design and development of TARGET for the acquisition and representation of procedural knowledge. The strategies employed by TARGET to support use by knowledge engineers, subject matter experts, programmers and managers will be discussed. This discussion includes the method by which the tool employs its graphical user interface to generate a task hierarchy report. Next, the approach to generate production rules for incorporation in and development of a CLIPS based expert system will be elaborated. TARGET also permits experts to visually describe procedural tasks as a common medium for knowledge refinement by the expert community and knowledge engineer making knowledge consensus possible. The paper briefly touches on the verification and validation issues facing the CLIPS rule generation aspects of TARGET. A description of efforts to support TARGET's interoperability issues on PCs, Macintoshes and UNIX workstations concludes the paper
    • …
    corecore