13,911 research outputs found

    Picosecond Laser Ablation of Polyhydroxyalkanoates (PHAs): Comparative Study of Neat and Blended Material Response

    Get PDF
    Polyhydroxyalkanoates (PHAs) have emerged as a promising biodegradable and biocompatible material for scaffold manufacturing in the tissue engineering field and food packaging. Surface modification is usually required to improve cell biocompatibility and/or reduce bacteria proliferation. Picosecond laser ablation was applied for surface micro structuring of short- and medium-chain length-PHAs and its blend. The response of each material as a function of laser energy and wavelength was analyzed. Picosecond pulsed laser modified the surface topography without affecting the material properties. UV wavelength irradiation showed halved ablation thresholds compared to visible (VIS) wavelength, revealing a greater photochemical nature of the ablation process at ultraviolet (UV) wavelength. Nevertheless, the ablation rate and, therefore, ablation efficiency did not show a clear dependence on beam wavelength. The different mechanical behavior of the considered PHAs did not lead to different ablation thresholds on each polymer at a constant wavelength, suggesting the interplay of the material mechanical parameters to equalize ablation thresholds. Blended-PHA showed a significant reduction in the ablation threshold under VIS irradiation respect to the neat PHAs. Picosecond ablation was proved to be a convenient technique for micro structuring of PHAs to generate surface microfeatures appropriate to influence cell behavior and improve the biocompatibility of scaffolds in tissue engineerin

    Splitting formulas for certain Waldhausen Nil-groups

    Full text link
    For a group G that splits as an amalgamation of A and B over a common subgroup C, there is an associated Waldhausen Nil-group, measuring the "failure" of Mayer-Vietoris for algebraic K-theory. Assume that (1) the amalgamation is acylindrical, and (2) the groups A,B,G satisfy the Farrell-Jones isomorphism conjecture. Then we show that the Waldhausen Nil-group splits as a direct sum of Nil-groups associated to certain (explicitly describable) infinite virtually cyclic subgroups of G. We note that a special case of an acylindrical amalgamation includes any amalgamation over a finite group C.Comment: 12 page

    Beyond conventional factorization: Non-Hermitian Hamiltonians with radial oscillator spectrum

    Full text link
    The eigenvalue problem of the spherically symmetric oscillator Hamiltonian is revisited in the context of canonical raising and lowering operators. The Hamiltonian is then factorized in terms of two not mutually adjoint factorizing operators which, in turn, give rise to a non-Hermitian radial Hamiltonian. The set of eigenvalues of this new Hamiltonian is exactly the same as the energy spectrum of the radial oscillator and the new square-integrable eigenfunctions are complex Darboux-deformations of the associated Laguerre polynomials.Comment: 13 pages, 7 figure

    A comparison of the Bering Sea, Gulf of Alaska, and Aleutian Islands large marine ecosystems through food web modeling / by K. Aydin ... [et al.]

    Get PDF
    Detailed mass balance food web models were constructed to compare ecosystem characteristics for three Alaska regions: the eastern Bering Sea (EBS), the Gulf of Alaska (GOA), and the Aleutian Islands (AI). This paper documents the methods and data used to construct the models and compares ecosystem structure and indicators across models. The common modeling framework, including biomass pool and fishery definitions, resulted in comparable food webs for the three ecosystems which showed that they all have the same apex predator—the Pacific halibut longline fishery. However, despite the similar methods used to construct the models, the data from each system included in the analysis clearly define differences in food web structure which may be important considerations for fishery management in Alaska ecosystems. The results showed that the EBS ecosystem has a much larger benthic influence in its food web than either the GOA or the AI. Conversely, the AI ecosystem has the strongest pelagic influence in its food web relative to the other two systems. The GOA ecosystem appears balanced between benthic and pelagic pathways, but is notable in having a smaller fisheries catch relative to the other two systems, and a high biomass of fish predators above trophic level (TL) 4, arrowtooth flounder and halibut. The patterns visible in aggregated food webs were confirmed in additional more detailed analyses of biomass and consumption in each ecosystem, using both the single species and whole ecosystem indicators developed here

    Geometry of Discrete Quantum Computing

    Full text link
    Conventional quantum computing entails a geometry based on the description of an n-qubit state using 2^{n} infinite precision complex numbers denoting a vector in a Hilbert space. Such numbers are in general uncomputable using any real-world resources, and, if we have the idea of physical law as some kind of computational algorithm of the universe, we would be compelled to alter our descriptions of physics to be consistent with computable numbers. Our purpose here is to examine the geometric implications of using finite fields Fp and finite complexified fields Fp^2 (based on primes p congruent to 3 mod{4}) as the basis for computations in a theory of discrete quantum computing, which would therefore become a computable theory. Because the states of a discrete n-qubit system are in principle enumerable, we are able to determine the proportions of entangled and unentangled states. In particular, we extend the Hopf fibration that defines the irreducible state space of conventional continuous n-qubit theories (which is the complex projective space CP{2^{n}-1}) to an analogous discrete geometry in which the Hopf circle for any n is found to be a discrete set of p+1 points. The tally of unit-length n-qubit states is given, and reduced via the generalized Hopf fibration to DCP{2^{n}-1}, the discrete analog of the complex projective space, which has p^{2^{n}-1} (p-1)\prod_{k=1}^{n-1} (p^{2^{k}}+1) irreducible states. Using a measure of entanglement, the purity, we explore the entanglement features of discrete quantum states and find that the n-qubit states based on the complexified field Fp^2 have p^{n} (p-1)^{n} unentangled states (the product of the tally for a single qubit) with purity 1, and they have p^{n+1}(p-1)(p+1)^{n-1} maximally entangled states with purity zero.Comment: 24 page
    corecore