14 research outputs found

    Contraception and post abortion services: Qualitative analysis of users' perspectives and experiences following Zika epidemic in Honduras

    Get PDF
    Background: Zika virus (ZIKV) infection during pregnancy has severe consequences on the new-born. The World Health Organization declared the Zika outbreak to be a Public Health Emergency of International Concern (PHEIC) in 2016. Health facilities in the regions most affected by Zika lacked the capacity to respond to the increased demand for contraception. The objectives were to explore healthcare users' perceptions regarding contraception, Zika prevention during pregnancy and post-abortion care (PAC) services in the context of a Zika outbreak in Tegucigalpa, Honduras, and to follow these services over time. Methods: This study was part of a broader implementation research study. We used qualitative research consistent with grounded theory approach. Semi-structured interviews and focus groups were performed with women and their partners who used contraceptive services or received PAC services. Data were collected in two stages from December 2017 to July 2018. Themes explored included contraception, Zika and PAC services. Results: Participants had positive attitude towards the use of contraceptive methods and demanded more information on safety, efficacy and on side effects. Health care services were inconsistent in the provision of information on Zika and contraception services. ZIKV vector transmission was known but fewer participants were aware of risk of sexual transmission of Zika. Barriers to access healthcare services included contraceptive and PAC services included distance to healthcare facilities, disorganized admission process, long waiting times and out-of-pocket expenditure to purchase medicines. Furthermore, poor quality, mistreatment and abuse of women seeking PAC was prevalent. Some positive changes were noted over time, such as improvements in infrastructure including improved privacy and cleanliness, removal of fees, requisite to bring clean water to hospital. Conclusions: Our results highlight the challenges and areas for improvement in policy and practice related to contraceptive services and PAC in the context of ZIKV infection. Public policies to prevent epidemics should focus more on providing proper sanitation; removing barriers to access and use of effective contraception as human rights priority. Zika epidemic has highlighted weaknesses in health systems that obstruct access to and use of sexual and reproductive health services. The study results call for increased efforts to improve access, especially for women of low socio-economic status and intervene at different levels to eradicate discrimination and improve equity in the provision of health care. Qualitative methods can capture the community perspectives and can provide useful information to develop interventions to improve services.Fil: Belizan, Maria. Instituto de Efectividad Clínica y Sanitaria; ArgentinaFil: Maradiaga, Edna. Facultad de Ciencias Médicas; HondurasFil: Roberti, Javier Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Epidemiología y Salud Pública. Instituto de Efectividad Clínica y Sanitaria. Centro de Investigaciones en Epidemiología y Salud Pública; ArgentinaFil: Casco Aguilar, Maricela. Facultad de Ciencias Médicas; HondurasFil: Ortez, Alison F.. Facultad de Ciencias Médicas; HondurasFil: Avila Flores, Juan C.. Facultad de Ciencias Médicas; HondurasFil: González, Gloria. Hospital Escuela; HondurasFil: Bustillo, Carolina. Hospital Escuela; HondurasFil: Calderón, Alejandra. Centro de Salud Alonso Suazo; HondurasFil: Bock, Harry. No especifíca;Fil: Cafferata, María L.. Instituto de Efectividad Clínica y Sanitaria; ArgentinaFil: Tavares, Adriano B.. Organizacion Mundial de la Salud; ArgentinaFil: Alger, Jackeline. Facultad de Ciencias Médicas; HondurasFil: Ali, Moazzam. Organizacion Mundial de la Salud; Argentin

    Response of a CMS HGCAL silicon-pad electromagnetic calorimeter prototype to 20-300 GeV positrons

    Full text link
    The Compact Muon Solenoid Collaboration is designing a new high-granularity endcap calorimeter, HGCAL, to be installed later this decade. As part of this development work, a prototype system was built, with an electromagnetic section consisting of 14 double-sided structures, providing 28 sampling layers. Each sampling layer has an hexagonal module, where a multipad large-area silicon sensor is glued between an electronics circuit board and a metal baseplate. The sensor pads of approximately 1 cm2^2 are wire-bonded to the circuit board and are readout by custom integrated circuits. The prototype was extensively tested with beams at CERN's Super Proton Synchrotron in 2018. Based on the data collected with beams of positrons, with energies ranging from 20 to 300 GeV, measurements of the energy resolution and linearity, the position and angular resolutions, and the shower shapes are presented and compared to a detailed Geant4 simulation

    Performance of the CMS High Granularity Calorimeter prototype to charged pion beams of 20-300 GeV/c

    Full text link
    The upgrade of the CMS experiment for the high luminosity operation of the LHC comprises the replacement of the current endcap calorimeter by a high granularity sampling calorimeter (HGCAL). The electromagnetic section of the HGCAL is based on silicon sensors interspersed between lead and copper (or copper tungsten) absorbers. The hadronic section uses layers of stainless steel as an absorbing medium and silicon sensors as an active medium in the regions of high radiation exposure, and scintillator tiles directly readout by silicon photomultipliers in the remaining regions. As part of the development of the detector and its readout electronic components, a section of a silicon-based HGCAL prototype detector along with a section of the CALICE AHCAL prototype was exposed to muons, electrons and charged pions in beam test experiments at the H2 beamline at the CERN SPS in October 2018. The AHCAL uses the same technology as foreseen for the HGCAL but with much finer longitudinal segmentation. The performance of the calorimeters in terms of energy response and resolution, longitudinal and transverse shower profiles is studied using negatively charged pions, and is compared to GEANT4 predictions. This is the first report summarizing results of hadronic showers measured by the HGCAL prototype using beam test data.Comment: To be submitted to JINS

    Timing Performance of the CMS High Granularity Calorimeter Prototype

    No full text
    International audienceThis paper describes the experience with the calibration, reconstruction and evaluation of the timing capabilities of the CMS HGCAL prototype in the beam tests in 2018. The calibration procedure includes multiple steps and corrections ranging from tens of nanoseconds to a few hundred picoseconds. The timing performance is studied using signals from positron beam particles with energies between 20 GeV and 300 GeV. The performance is studied as a function of particle energy against an external timing reference as well as standalone by comparing the two different halves of the prototype. The timing resolution is found to be 60 ps for single-channel measurements and better than 20 ps for full showers at the highest energies, setting excellent perspectives for the HGCAL calorimeter performance at the HL-LHC

    Timing Performance of the CMS High Granularity Calorimeter Prototype

    No full text
    International audienceThis paper describes the experience with the calibration, reconstruction and evaluation of the timing capabilities of the CMS HGCAL prototype in the beam tests in 2018. The calibration procedure includes multiple steps and corrections ranging from tens of nanoseconds to a few hundred picoseconds. The timing performance is studied using signals from positron beam particles with energies between 20 GeV and 300 GeV. The performance is studied as a function of particle energy against an external timing reference as well as standalone by comparing the two different halves of the prototype. The timing resolution is found to be 60 ps for single-channel measurements and better than 20 ps for full showers at the highest energies, setting excellent perspectives for the HGCAL calorimeter performance at the HL-LHC

    Response of a CMS HGCAL silicon-pad electromagnetic calorimeter prototype to 20–300 GeV positrons

    No full text
    The Compact Muon Solenoid collaboration is designing a new high-granularity endcap calorimeter, HGCAL, to be installed later this decade. As part of this development work, a prototype system was built, with an electromagnetic section consisting of 14 double-sided structures, providing 28 sampling layers. Each sampling layer has an hexagonal module, where a multipad large-area silicon sensor is glued between an electronics circuit board and a metal baseplate. The sensor pads of approximately 1.1 cm2^{2} are wire-bonded to the circuit board and are readout by custom integrated circuits. The prototype was extensively tested with beams at CERN's Super Proton Synchrotron in 2018. Based on the data collected with beams of positrons, with energies ranging from 20 to 300 GeV, measurements of the energy resolution and linearity, the position and angular resolutions, and the shower shapes are presented and compared to a detailed Geant4 simulation

    Response of a CMS HGCAL silicon-pad electromagnetic calorimeter prototype to 20-300 GeV positrons

    No full text
    CMS is designing a new high-granularity endcap calorimeter, HGCAL, to be installed later this decade. As part of this development work, a prototype system was extensively tested with beams at CERN's SPS in 2018. The electromagnetic section of the detector called CE-E prototype, consists of 14 double-sided structures, providing 28 sampling layers. Each layer carries a hexagonal module where a multi-pad large area silicon sensor is glued between the electronics PCB and a metal baseplate. The sensor pads of approximately 1 cm2^2 are wire-bonded to the PCB and are readout by the Skiroc2-CMS ASIC. The prototype has been exposed to beams of positrons with energies ranging from 20 to 300 GeV. Based on these data, measurements of the CE-E prototype energy resolution and linearity, position resolution, resolution on the positron angle of incidence derived from the shower axis reconstruction and shower shapes are presented and compared to detailed GEANT4 simulations

    Timing Performance of the CMS High Granularity Calorimeter Prototype

    No full text
    International audienceThis paper describes the experience with the calibration, reconstruction and evaluation of the timing capabilities of the CMS HGCAL prototype in the beam tests in 2018. The calibration procedure includes multiple steps and corrections ranging from tens of nanoseconds to a few hundred picoseconds. The timing performance is studied using signals from positron beam particles with energies between 20 GeV and 300 GeV. The performance is studied as a function of particle energy against an external timing reference as well as standalone by comparing the two different halves of the prototype. The timing resolution is found to be 60 ps for single-channel measurements and better than 20 ps for full showers at the highest energies, setting excellent perspectives for the HGCAL calorimeter performance at the HL-LHC

    Construction and commissioning of CMS CE prototype silicon modules

    No full text
    As part of its HL-LHC upgrade program, the CMS Collaboration is developing a High Granularity Calorimeter (CE) to replace the existing endcap calorimeters. The CE is a sampling calorimeter with unprecedented transverse and longitudinal readout for both electromagnetic (CE-E) and hadronic (CE-H) compartments. The calorimeter will be built with \sim30,000 hexagonal silicon modules. Prototype modules have been constructed with 6-inch hexagonal silicon sensors with cell areas of 1.1 cm2cm^2, and the SKIROC2-CMS readout ASIC. Beam tests of different sampling configurations were conducted with the prototype modules at DESY and CERN in 2017 and 2018. This paper describes the construction and commissioning of the CE calorimeter prototype, the silicon modules used in the construction, their basic performance, and the methods used for their calibration

    Neutron irradiation and electrical characterisation of the first 8” silicon pad sensor prototypes for the CMS calorimeter endcap upgrade

    No full text
    International audienceAs part of its HL-LHC upgrade program, the CMS collaboration is replacing its existing endcap calorimeters with a high-granularity calorimeter (CE). The new calorimeter is a sampling calorimeter with unprecedented transverse and longitudinal readout for both electromagnetic and hadronic compartments. Due to its compactness, intrinsic time resolution, and radiation hardness, silicon has been chosen as active material for the regions exposed to higher radiation levels. The silicon sensors are fabricated as 20 cm (8”) wide hexagonal wafers and are segmented into several hundred pads which are read out individually. As part of the sensor qualification strategy, 8” sensor irradiation with neutrons has been conducted at the Rhode Island Nuclear Science Center (RINSC) and followed by their electrical characterisation in 2020-21. The completion of this important milestone in the CE's R&D program is documented in this paper and it provides detailed account of the associated infrastructure and procedures.The results on the electrical properties of the irradiated CE silicon sensors are presented
    corecore