134 research outputs found

    Alignment Dynamics of Single-Walled Carbon Nanotubes in Pulsed Ultrahigh Magnetic Fields

    Full text link
    We have measured the dynamic alignment properties of single-walled carbon nanotube (SWNT) suspensions in pulsed high magnetic fields through linear dichroism spectroscopy. Millisecond-duration pulsed high magnetic fields up to 56 T as well as microsecond-duration pulsed ultrahigh magnetic fields up to 166 T were used. Due to their anisotropic magnetic properties, SWNTs align in an applied magnetic field, and because of their anisotropic optical properties, aligned SWNTs show linear dichroism. The characteristics of their overall alignment depend on several factors, including the viscosity and temperature of the suspending solvent, the degree of anisotropy of nanotube magnetic susceptibilities, the nanotube length distribution, the degree of nanotube bundling, and the strength and duration of the applied magnetic field. In order to explain our data, we have developed a theoretical model based on the Smoluchowski equation for rigid rods that accurately reproduces the salient features of the experimental data.Comment: 20 pages, 6 figure

    Longitudinal spin transport in diluted magnetic semiconductor superlattices: the effect of the giant Zeeman splitting

    Full text link
    Longitudinal spin transport in diluted magnetic semiconductor superlattices is investigated theoretically. The longitudinal magnetoconductivity (MC) in such systems exhibits an oscillating behavior as function of an external magnetic field. In the weak magnetic field region the giant Zeeman splitting plays a dominant role which leads to a large negative magnetoconductivity. In the strong magnetic field region the MC exhibits deep dips with increasing magnetic field. The oscillating behavior is attributed to the interplay between the discrete Landau levels and the Fermi surface. The decrease of the MC at low magnetic field is caused by the sds-d exchange interaction between the electron in the conduction band and the magnetic ions.Comment: 6 pages, 9 figures, submitted to Phys. Rev.

    Oscillating magnetoresistance in diluted magnetic semiconductor barrier structures

    Full text link
    Ballistic spin polarized transport through diluted magnetic semiconductor (DMS) single and double barrier structures is investigated theoretically using a two-component model. The tunneling magnetoresistance (TMR) of the system exhibits oscillating behavior when the magnetic field are varied. An interesting beat pattern in the TMR and spin polarization is found for different NMS/DMS double barrier structures which arises from an interplay between the spin-up and spin-down electron channels which are splitted by the s-d exchange interaction.Comment: 4 pages, 6 figures, submitted to Phys. Rev.

    CEACAM1 Promotes Melanoma Cell Growth through Sox-2

    Get PDF
    AbstractThe prognostic value of the carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1) in melanoma was demonstrated more than a decade ago as superior to Breslow score. We have previously shown that intercellular homophilic CEACAM1 interactions protect melanoma cells from lymphocyte-mediated elimination. Here, we study the direct effects of CEACAM1 on melanoma cell biology. By employing tissue microarrays and low-passage primary cultures of metastatic melanoma, we show that CEACAM1 expression gradually increases from nevi to metastatic specimens, with a strong dominance of the CEACAM1-Long tail splice variant. Using experimental systems of CEACAM1 knockdown and overexpression of selective variants or truncation mutants, we prove that only the full-length long tail variant enhances melanoma cell proliferation in vitro and in vivo. This effect is not reversed with a CEACAM1-blocking antibody, suggesting that it is not mediated by intercellular homophilic interactions. Downstream, CEACAM1-Long increases the expression of Sox-2, which we show to be responsible for the CEACAM1-mediated enhanced proliferation. Furthermore, analysis of the CEACAM1 promoter reveals two single-nucleotide polymorphisms (SNPs) that significantly enhance the promoter's activity compared with the consensus nucleotides. Importantly, case-control genetic SNP analysis of 134 patients with melanoma and matched healthy donors show that patients with melanoma do not exhibit the Hardy-Weinberg balance and that homozygous SNP genotype enhances the hazard ratio to develop melanoma by 35%. These observations shed new mechanistic light on the role of CEACAM1 in melanoma, forming the basis for development of novel therapeutic and diagnostic technologies

    Comparative analysis of glutaredoxin domains from bacterial opportunistic pathogens

    Get PDF
    NMR structures of the glutaredoxin (GLXR) domains from Br. melitensis and Ba. henselae have been determined as part of the SSGCID initiative. Comparison of the domains with known structures reveals overall structural similarity between these proteins and previously determined E. coli GLXR structures, with minor changes associated with the position of helix 1 and with regions that diverge from similar structures found in the closest related human homolog

    Natural Killer Lysis Receptor (NKLR)/NKLR-Ligand Matching as a Novel Approach for Enhancing Anti-Tumor Activity of Allogeneic NK Cells

    Get PDF
    NK cells are key players in anti tumor immune response, which can be employed in cell-based therapeutic modalities. One of the suggested ways to amplify their anti tumor effect, especially in the field of stem cell transplantation, is by selecting donor/recipient mismatches in specific HLA, to reduce the inhibitory effect of killer Ig-like receptors (KIRs). Here we suggest an alternative approach for augmentation of anti tumor effect of allogeneic NK cells, which is founded on profile matching of donor NK lysis receptors (NKLR) phenotype with tumor lysis-ligands.We show that an NKLR-mediated killing directly correlates with the NKLR expression intensity on NK cells. Considerable donor variability in the expression of CD16, NKp46, NKG2D and NKp30 on circulating NK cells, combined with the stability of phenotype in several independently performed tests over two months, indicates that NKLR-guided selection of donors is feasible. As a proof of concept, we show that melanoma cells are dominantly recognized by three NKLRs: NKG2D, NKp30 and NKp44. Notably, the expression of NKp30 on circulating NK cells among metastatic melanoma patients was significantly decreased, which diminishes their ability to kill melanoma cells. Ex vivo expansion of NK cells results not only in increased amount of cells but also in a consistently superior and predictable expression of NKG2D, NKp30 and NKp44. Moreover, expanded NK cultures with high expression of NKG2D or NKp30 were mostly derived from the corresponding NKG2D(high) or NK30(high) donors. These NK cultures subsequently displayed an improved cytotoxic activity against melanoma in a HLA/KIR-ligand mismatched setup, which was NKLR-dependent, as demonstrated with blocking anti-NKG2D antibodies.NKLR/NKLR-ligand matching reproducibly elicits enhanced NK anti-tumor response. Common NKLR recognition patterns of tumors, as demonstrated here in melanoma, would allow implementation of this approach in solid malignancies and potentially in hematological malignancies, either independently or in adjunction to other modalities

    Regulation of Cancer Aggressive Features in Melanoma Cells by MicroRNAs

    Get PDF
    MicroRNAs (miRNAs) are small non-coding RNAs with regulatory roles, which are involved in a broad spectrum of physiological and pathological processes, including cancer. A common strategy for identification of miRNAs involved in cell transformation is to compare malignant cells to normal cells. Here we focus on identification of miRNAs that regulate the aggressive phenotype of melanoma cells. To avoid differences due to genetic background, a comparative high-throughput miRNA profiling was performed on two isogenic human melanoma cell lines that display major differences in their net proliferation, invasion and tube formation activities. This screening revealed two major cohorts of differentially expressed miRNAs. We speculated that miRNAs up-regulated in the more-aggressive cell line contribute oncogenic features, while the down-regulated miRNAs are tumor suppressive. This assumption was further tested experimentally on five candidate tumor suppressive miRNAs (miR-31, -34a, -184, -185 and -204) and on one candidate oncogenic miRNA (miR-17-5p), all of which have never been reported before in cutaneous melanoma. Remarkably, all candidate Suppressive-miRNAs inhibited net proliferation, invasion or tube formation, while miR-17-5p enhanced cell proliferation. miR-34a and miR-185 were further shown to inhibit the growth of melanoma xenografts when implanted in SCID-NOD mice. Finally, all six candidate miRNAs were detected in 15 different metastatic melanoma specimens, attesting for the physiological relevance of our findings. Collectively, these findings may prove instrumental for understanding mechanisms of disease and for development of novel therapeutic and staging technologies for melanoma

    A Reduction in Ribonucleotide Reductase Activity Slows Down the Chromosome Replication Fork but Does Not Change Its Localization

    Get PDF
    BACKGROUND:It has been proposed that the enzymes of nucleotide biosynthesis may be compartmentalized or concentrated in a structure affecting the organization of newly replicated DNA. Here we have investigated the effect of changes in ribonucleotide reductase (RNR) activity on chromosome replication and organization of replication forks in Escherichia coli. METHODOLOGY/PRINCIPAL FINDINGS:Reduced concentrations of deoxyribonucleotides (dNTPs) obtained by reducing the activity of wild type RNR by treatment with hydroxyurea or by mutation, resulted in a lengthening of the replication period. The replication fork speed was found to be gradually reduced proportionately to moderate reductions in nucleotide availability. Cells with highly extended C periods showed a "delay" in cell division i.e. had a higher cell mass. Visualization of SeqA structures by immunofluorescence indicated no change in organization of the new DNA upon moderate limitation of RNR activity. Severe nucleotide limitation led to replication fork stalling and reversal. Well defined SeqA structures were not found in situations of extensive replication fork repair. In cells with stalled forks obtained by UV irradiation, considerable DNA compaction was observed, possibly indicating a reorganization of the DNA into a "repair structure" during the initial phase of the SOS response. CONCLUSION/SIGNIFICANCE:The results indicate that the replication fork is slowed down in a controlled manner during moderate nucleotide depletion and that a change in the activity of RNR does not lead to a change in the organization of newly replicated DNA. Control of cell division but not control of initiation was affected by the changes in replication elongation

    Depletion of Plasmodium berghei Plasmoredoxin Reveals a Non-Essential Role for Life Cycle Progression of the Malaria Parasite

    Get PDF
    Proliferation of the pathogenic Plasmodium asexual blood stages in host erythrocytes requires an exquisite capacity to protect the malaria parasite against oxidative stress. This function is achieved by a complex antioxidant defence system composed of redox-active proteins and low MW antioxidants. Here, we disrupted the P. berghei plasmoredoxin gene that encodes a parasite-specific 22 kDa member of the thioredoxin superfamily. The successful generation of plasmoredoxin knockout mutants in the rodent model malaria parasite and phenotypic analysis during life cycle progression revealed a non-vital role in vivo. Our findings suggest that plasmoredoxin fulfils a specialized and dispensable role for Plasmodium and highlights the need for target validation to inform drug development strategies
    corecore