223 research outputs found

    Methotrexate used in combination with aminolaevulinic acid for photodynamic killing of prostate cancer cells

    Get PDF
    Photodynamic therapy (PDT) using 5-aminolaevulinic acid (ALA) to drive production of an intracellular photosensitiser, protoporphyrin IX (PpIX), is a promising cancer treatment. However, ALA-PDT is still suboptimal for thick or refractory tumours. Searching for new approaches, we tested a known inducer of cellular differentiation, methotrexate (MTX), in combination with ALA-PDT in LNCaP cells. Methotrexate alone promoted growth arrest, differentiation, and apoptosis. Methotrexate pretreatment (1 mg l−1, 72 h) followed by ALA (0.3 mM, 4 h) resulted in a three-fold increase in intracellular PpIX, by biochemical and confocal analyses. After exposure to 512 nm light, killing was significantly enhanced in MTX-preconditioned cells. The reverse order of treatments, ALA-PDT followed by MTX, yielded no enhancement. Methotrexate caused a similar relative increase in PpIX, whether cells were incubated with ALA, methyl-ALA, or hexyl-ALA, arguing against a major effect upon ALA transport. Searching for an effect among porphyrin synthetic enzymes, we found that coproporphyrinogen oxidase (CPO) was increased three-fold by MTX at the mRNA and protein levels. Transfection of LNCaP cells with a CPO-expressing vector stimulated the accumulation of PpIX. Our data suggest that MTX, when used to modulate intracellular production of endogenous PpIX, may provide a new combination PDT approach for certain cancers

    Characterisation of nanoparticles by means of high-resolution SEM/EDS in transmission mode

    Get PDF
    Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd

    Differentiation enhances aminolevulinic acid-dependent photodynamic treatment of LNCaP prostate cancer cells

    Get PDF
    Photodynamic therapy using 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) may be applied to the treatment of neoplasms in a variety of organs. In order to enhance existing regimens of photodynamic therapy, we investigated the effects of adding differentiation therapy to photodynamic therapy in human prostate cancer cells in vitro. The objective of differentiation therapy per se is to reverse the lack of differentiation in cancer cells using pharmacological agents. The motivation for this study was to exploit the differentiation-dependent expression of some heme enzymes to enhance tumour cell toxicity of ALA-photodynamic therapy. A short course of differentiation therapy was applied to increase PpIX formation during subsequent ALA exposure. Using the synthetic androgen R1881, isomers of retinoic acid, and analogues of vitamin D for 3 to 4 days, exogenous ALA-dependent PpIX formation in LNCaP cells was increased, along with markers for growth arrest and for differentiation. As a consequence of higher PpIX levels, cytotoxic effects of visible light exposure were also enhanced. Short-term differentiation therapy increased not only the overall PpIX production but also reduced that fraction of cells that contained low PpIX levels as demonstrated by flow cytometry and fluorescence microscopy. This study suggests that it will be feasible to develop protocols combining short-term differentiation therapy with photodynamic therapy for enhanced photosensitisation

    The role of reperfusion injury in photodynamic therapy with 5-aminolaevulinic acid – a study on normal rat colon

    Get PDF
    Reperfusion injury can occur when blood flow is restored after a transient period of ischaemia. The resulting cascade of reactive oxygen species damages tissue. This mechanism may contribute to the tissue damage produced by 5-aminolaevulinic acid-induced photodynamic therapy, if this treatment temporarily depletes oxygen in an area that is subsequently reoxygenated. This was investigated in the normal colon of female Wistar rats. All animals received 200 mg kg−1 5-aminolaevulinic acid intravenously 2 h prior to 25 J (100 mW) of 628 nm light, which was delivered continuously or fractionated (5 J/150 second dark interval/20 J). Animals were recovered following surgery, killed 3 days later and the photodynamic therapy lesion measured macroscopically. The effects of reperfusion injury were removed from the experiments either through the administration of free radical scavengers (superoxide dismutase (10 mg kg−1) and catalase (7.5 mg kg−1) in combination) or allopurinol (an inhibitor of xanthine oxidase (50 mg kg−1)). Prior administration of the free radical scavengers and allopurinol abolished the macroscopic damage produced by 5-aminolaevulinic acid photodynamic therapy in this model, regardless of the light regime employed. As the specific inhibitor of xanthine oxidase (allopurinol) protected against photodynamic therapy damage, it is concluded that reperfusion injury is involved in the mechanism of photodynamic therapy in the rat colon

    Size and Shape Distributions of Primary Crystallites in Titania Aggregates

    Get PDF
    The primary crystallite size of titania powder relates to its properties in a number of applications. Transmission electron microscopy was used in this interlaboratory comparison (ILC) to measure primary crystallite size and shape distributions for a commercial aggregated titania powder. Data of four size descriptors and two shape descriptors were evaluated across nine laboratories. Data repeatability and reproducibility was evaluated by analysis of variance. One-third of the laboratory pairs had similar size descriptor data, but 83% of the pairs had similar aspect ratio data. Scale descriptor distributions were generally unimodal and were well-described by lognormal reference models. Shape descriptor distributions were multi-modal but data visualization plots demonstrated that the Weibull distribution was preferred to the normal distribution. For the equivalent circular diameter size descriptor, measurement uncertainties of the lognormal distribution scale and width parameters were 9.5% and 22%, respectively. For the aspect ratio shape descriptor, the measurement uncertainties of the Weibull distribution scale and width parameters were 7.0% and 26%, respectively. Both measurement uncertainty estimates and data visualizations should be used to analyze size and shape distributions of particles on the nanoscale
    corecore