11,861 research outputs found

    Unveiling the circumstellar environment towards a massive young stellar object

    Get PDF
    As a continuation of a previous work, in which we found strong evidence of massive molecular outflows towards a massive star forming site, we present a new study of this region based on very high angular resolution observations with the aim of discovering the outflow driven mechanism. Using near-IR data acquired with Gemini-NIRI at the broad H- and Ks-bands, we study a region of 22" x 22" around the UCHII region G045.47+0.05, a massive star forming site at the distance of about 8 kpc. To image the source with the highest spatial resolution possible we employed the adaptative optic system ALTAIR, achieving an angular resolution of about 0.15". We discovered a cone-like shape nebula with an opening angle of about 90 degree extending eastwards the IR source 2MASS J19142564+1109283, a very likely MYSO. This morphology suggests a cavity that was cleared in the circumstellar material and its emission may arise from scattered continuum light, warm dust, and likely emission lines from shock-excited gas. The nebula, presenting arc-like features, is connected with the IR source through a jet-like structure, which is aligned with the blue shifted CO outflow found in a previous study. The near-IR structure lies ~3" north of the radio continuum emission, revealing that it is not spatially coincident with the UCHII region. The observed morphology and structure of the near-IR nebula strongly suggest the presence of a precessing jet. In this study we have resolved the circumstellar ambient (in scale of a thousand A.U.) of a distant MYSO, indeed one of the farthest cases.Comment: Accepted in A&A Letters (October 2013

    Discriminating dynamical from additive noise in the Van der Pol oscillator

    Full text link
    We address the distinction between dynamical and additive noise in time series analysis by making a joint evaluation of both the statistical continuity of the series and the statistical differentiability of the reconstructed measure. Low levels of the latter and high levels of the former indicate the presence of dynamical noise only, while low values of the two are observed as soon as additive noise contaminates the signal. The method is presented through the example of the Van der Pol oscillator, but is expected to be of general validity for continuous-time systems.Comment: 12 pages (Elsevier LaTeX class), 4 EPS figures, submitted to Physica D (4 july 2001

    c(2x2) Interface Alloys in Co/Cu Multilayers - Influence on Interlayer Exchange Coupling and GMR

    Full text link
    The influence of a c(2x2) ordered interface alloy of 3d transition metals at the ferromagnet/nonmagnet interface on interlayer exchange coupling (IXC), the formation of quantum well states (QWS) and the phenomenon of Giant MagnetoResistance is investigated. We obtained a strong dependence of IXC on interface alloy formation. The GMR ratio is also strongly influenced. We found that Fe, Ni and Cu alloys at the interface enhance the GMR ratio for in-plane geometry by nearly a factor of 2.Comment: 14 pages, 5 figures, 1 table, subm. to PR

    Studying the Molecular Ambient towards the Young Stellar Object EGO G35.04-0.47

    Get PDF
    We are performing a systematic study of the interstellar medium around extended green objects (EGOs), likely massive young stellar objects driving outflows. EGO G35.04-0.47 is located towards a dark cloud at the northern-west edge of an HII region. Recently, H2 jets were discovered towards this source, mainly towards its southwest, where the H2 1-0 S(1) emission peaks. Therefore, the source was catalogued as the Molecular Hydrogen emission-line object MHO 2429. In order to study the molecular ambient towards this star-forming site, we observed a region around the aforementioned EGO using the Atacama Submillimeter Telescope Experiment in the 12CO J=3--2, 13CO J=3--2, HCO+ J=4--3, and CS J=7--6 lines with an angular and spectral resolution of 22" and 0.11 km s-1, respectively. The observations revealed a molecular clump where the EGO is embedded at v_LSR ~ 51 km s-1, in coincidence with the velocity of a Class I 95 GHz methanol maser previously detected. Analyzing the 12CO line we discovered high velocity molecular gas in the range from 34 to 47 km s-1, most likely a blueshifted outflow driven by the EGO. The alignment and shape of this molecular structure coincide with those of the southwest lobe of MHO 2429 mainly between 46 and 47 km s-1, confirming that we are mapping its CO counterpart. Performing a SED analysis of EGO G35.04-0.47 we found that its central object should be an intermediate-mass young stellar object accreting mass at a rate similar to those found in some massive YSOs. We suggest that this source can become a massive YSO.Comment: accepted to be published in PASJ - 24 September 201

    12CO and 13CO J=3-2 observations toward N11 in the Large Magellanic Cloud

    Full text link
    After 30 Doradus, N11 is the second largest and brightest nebula in the LMC. This large nebula has several OB associations with bright nebulae at its surroundings. N11 was previously mapped at the lowest rotational transitions of 12^{12}CO (J=1--0 and 2--1), and in some particular regions pointings of the 13^{13}CO J=1--0 and 2--1 lines were also performed. Using ASTE we mapped the whole extension of the N11 nebula in the 12^{12}CO J=3--2 line, and three sub-regions in the 13^{13}CO J=3--2 line. The regions mapped in the 13^{13}CO J=3--2 were selected based on that they may be exposed to the radiation at different ways: a region lying over the nebula related to the OB association LH10 (N11B), another one that it is associated with the southern part of the nebula related to the OB association LH13 (N11D), and finally a farther area at the southwest without any embedded OB association (N11I). We found that the morphology of the molecular clouds lying in each region shows some signatures that could be explained by the expansion of the nebulae and the action of the radiation. Fragmentation generated in a molecular shell due to the expansion of the N11 nebula is suggested. The integrated line ratios 12^{12}CO/13^{13}CO show evidences of selective photodissociation of the 13^{13}CO, and probably other mechanisms such as chemical fractionation. The CO contribution to the continuum at 870 μ\mum was directly derived. The distribution of the integrated line ratios 12^{12}CO J=3--2/2--1 show hints of stellar feedback in N11B and N11D. The ratio between the virial and LTE mass (Mvir_{\rm vir}/MLTE_{\rm LTE}) is higher than unity in all analyzed molecular clumps, which suggests that the clumps are not gravitationally bounded and may be supported by external pressure. A non-LTE analysis suggests that we are mapping gas with densities about a few 103^{3} cm−3^{-3}.Comment: Accepted to be published in A&A. Figures were degrade

    A view of Large Magellanic Cloud HII regions N159, N132, and N166 through the 345 GHz window

    Get PDF
    We present results obtained towards the HII regions N159, N166, and N132 from the emission of several molecular lines in the 345 GHz window. Using ASTE we mapped a 2.4' ×\times 2.4' region towards the molecular cloud N159-W in the 13^{13}CO J=3-2 line and observed several molecular lines at an IR peak very close to a massive young stellar object. 12^{12}CO and 13^{13}CO J=3-2 were observed towards two positions in N166 and one position in N132. The 13^{13}CO J=3-2 map of the N159-W cloud shows that the molecular peak is shifted southwest compared to the peak of the IR emission. Towards the IR peak we detected emission from HCN, HNC, HCO+^{+}, C2_{2}H J=4-3, CS J=7-6, and tentatively C18^{18}O J=3-2. This is the first reported detection of these molecular lines in N159-W. The analysis of the C2_{2}H line yields more evidence supporting that the chemistry involving this molecular species in compact and/or UCHII regions in the LMC should be similar to that in Galactic ones. A non-LTE study of the CO emission suggests the presence of both cool and warm gas in the analysed region. The same analysis for the CS, HCO+^{+}, HCN, and HNC shows that it is very likely that their emissions arise mainly from warm gas with a density between 5×1055 \times 10^5 to some 10610^6 cm−3^{-3}. The obtained HCN/HNC abundance ratio greater than 1 is compatible with warm gas and with an star-forming scenario. From the analysis of the molecular lines observed towards N132 and N166 we propose that both regions should have similar physical conditions, with densities of about 103^3 cm−3^{-3}.Comment: accepted in MNRAS (October 5, 2015
    • …
    corecore