
 
 
 
 
 
 
 
 

 
A finite point method to solve 

shallow water equations 
 

 
 

C. Buachart 
E. Ortega 
E. Oñate 

 
 

 
 
 

 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Publication CIMNE Nº-337, February 2009 
 
 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scipedia

https://core.ac.uk/display/296527237?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 
 
 

 
 

 
 

 
A finite point method to solve 

shallow water equations 
 

 
 

C. Buachart 
E. Ortega 
E. Oñate 

 
 

 
 

 
Publication CIMNE Nº-337, February 2009 

 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 

International Center for Numerical Methods in Engineering 
Gran Capitán s/n, 08034 Barcelona, Spain 



 



 ii

 

Table of Contents 
 

TITLE 
 

PAGE

 
1 Introduction  1

 
2 Weighted least squares approximations 2
 
3 Computation of the shape functions parameters 7
 
4                Generation of local cloud 10
 
5                Solving the shallow water equations 13
 
6                Numerical Examples  25
 
7                Conclusions 32
 
Acknowledgement 32

 



 1

1. INTRODUCTION 
 
The Finite Point Method (FPM) proposed by Oñate et al.1 is a truly meshfree method, 
which has a great capability to handle fluid flow2 and solid mechanics3 problems. The 
numerical analysis process for this meshfree scheme consists of generating first a set 
of points, named global cloud of points or nodes, within problem domain. Then, for 
each of these points, a local cloud of neighboring points is selected. Local 
approximations of unknowns are performed using weighted least square procedure. 
Finally, the algebraic equations are obtained by substituting above local 
approximations directly into the governing partial differential equations of the 
problem (strong form). 
 Due to the great capability to solve the fluid flow problem, in this present 
work we will try to solve the shallow water equations4, which are degenerated from 
tri-dimensional Navier-Strokes equations by integrating them in gravity direction. 
Similar with other fluid flow problems, the solution procedure need some 
stabilization. In this work, we use the approximate Riemann solver, which is most 
suitable to work with the strong form of governing equations5. Also, to preserve the 
high accuracy of FPM approximation, the iterative scheme to generate the local cloud 
and local approximation proposed by Ortega et al.6, are used to construct FPM 
approximation. 
 The report is organized as follows: Section 2 introduce the basic weighted 
least square (WLS) approximation for finite point method. Section 3 explains the 
iterative procedure to compute the shape functions. Section 4 describes the 
construction of local clouds, and Section 5 the shallow water equations and the flow 
solver. Numerical examples are shown in Section 6, and some conclusions are drawn 
in Section 7. 

                                                 
1

 Oñate, E., Idelsohn, S. Zienkiewicz, O. C. Taylor, R. L. and Sacco, C. (1996). A finite point method 
for analysis of fluid mechanics problems. Applications to convective transport and fluid flow, 
International Journal for Numerical Methods in Engineering, 39: 3839-3866. 
2

 Löhner, R., Sacco, C., Onate, E. and Idelsohn, S. (2002). A finite point method for compressible 
flow, International Journal for Numerical Methods in Engineering, 53: 1765-1779. 
3

 Oñate, E., Perazzo, F. and Miquel, J. (2001). A finite point method for elasticity problems, Computer 
and Structures, 79: 2151-2163. 
4

 Zienkiewicz, O. C. and Taylor, R. L. (2000). The Finite Element Method, vol III: Fluid Dynamics, 5th 
edition, Butterworth-Heinemann. 
5

 Roe, P. L. (1981). Approximate Riemann solvers, parameter vectors and difference schemes, Journal 
of Computational Physics, 43: 357-372. 
6

 Ortega, E., Oñate, E. and Idelsohn, S. (2007). An improved finite point method for tri-dimensional 
potential flows, Computational Mechanics, 40: 949-963. 



 2

2. WEIGHTED LEAST SQUARES APPROXIMATIONS 
 
In this section, we recall the basic weighted least squares procedure. An approximation of 
unknown function ( )u x  defined in a closed domain dΩ∈R , where d = 1, 2 or 3, which is 
discretized to be a set of points ,  1, 2,...,i i n=x . In order to obtain a local approximation of 

( )u x , the domain is divided into local subdomains iΩ  so that 
1

n

i
i=

Ω ⊆ Ω∪ . Assume that iΩ  

contains np  points (clouds of points). Each cloud of points consists of a point ix  called 
star point and a set of points , 1, 2,..., 1j j np= −x , surrounding star point ix . The unknown 

function ( )u x  may be approximated within iΩ  by 
 

 ( ) ( ) ( ) ( )T

1

ˆ
m

u u pζ ζ
ζ

α
=

≈ = = ⋅∑x x x p x α  (2.1) 

 
where [ ]T

1 2 ... mα α α=α  is a vector must be determined, and the vector ( )p x  
contains the so-called basis functions, which are typically monomials. For 2D problems we 
have used: 
 

• Quadratic basis (m = 6) 
 

            ( )T 2 21 ξ η ξ ξη η⎡ ⎤= ⎣ ⎦p x   (2.2) 
 

• Cubic basis (m = 10) 
 
            ( )T 2 2 3 2 2 31 ξ η ξ ξη η ξ ξ η ξη η⎡ ⎤= ⎣ ⎦p x  (2.3) 
 
where 

 
max max

,  i ix x y y
d d

ξ η− −
= =  (2.4) 

 
and ( )max max j id = −x x  is the distance between the star point and the furthest point in 

the cloud.  
Throughout this report, indices i and j are used to represent the star points, and 

cloud of points, respectively. Hence, the range are 1,2,...,i n=  and 1,2,...,j np= . On the 
other hand, indices k and l are ranged from 1 to d. The Einstein summation convention will 
be employed, i.e., a sum is always performed over repeated indices, except for an index i. 
Define the notation ( ) ( ) ( )ˆ ˆ, ,h

j j j j j ju u u u= = =x x p p x  and ( )ij i jϕ ϕ= x , the weighted 

least squares approximation (WLSQ) within iΩ  is obtained by minimizing 
 
 ( ) ( )2 2Tˆ h h

i ij j j ij j jJ u u uϕ ϕ= − = − ⋅p α  (2.4) 
 



 3

The quality of WLSQ approximation depends on the shape of the weighting function. In 
FPM, a fixed weighting function ( )iϕ x , centered on the star point ix  of the cloud is 
chosen so that it satisfies the following conditions 
 

 
( )
( )
( )

0,  

0,  

1

i i

i i

i i

ϕ

ϕ

ϕ

≥ ∀ ∈Ω

= ∀ ∉Ω

=

x x

x x

x

 (2.5) 

 
This kind of approximation is called Fixed Least Squares Method (FLS) and can be 
considered as a particular case of the Moving Least Squares Method (MLS) proposed by 
Lancaster and Salkauskas7. It should be noticed that the approximation functions obtained 
are discontinuous and this fact imposes certain restrictions on the local approximation. 

We remark that np m≥  is always required. Moreover, for np m=  the effect of 
weighting function vanishes, and the procedure reverts to interpolation. The minimization 
of iJ  with respect to α  yields 
 
 h⋅ = ⋅A α B u  (2.6) 
i.e. 
 
 1,  h −= ⋅ = ⋅α C u C A B  (2.7) 
 
where 

                                           ( )T

1

np

ij j j
j

ϕ
=

= ⊗∑A p p  (2.8) 

 1 1 2 2 ...i i inp npϕ ϕ ϕ⎡ ⎤= ⎣ ⎦B p p p  (2.9) 
 
Replacing (2.7) into (2.1), the approximation to the unknown function is obtained for 
=x x� , thus 

 
 ( ) ( ) ( )Tˆ h hu = ⋅ ⋅ = ⋅x p x C u N x u� � �  (2.10) 
 
where ( ) ( )T:= ⋅N x p x C� � , is the shape function (row) vector of the point x�  in iΩ . 
 The adoption of an FLS scheme, where matrices A and B are constant in iΩ , of 
course matrix C, noticeably simplifies the calculation of shape functions derivatives. 
Consequently, for any s-order of derivatives, 
 

 ( ) ( )Ts s

s s
k kx x

∂ ∂
= ⋅

∂ ∂
N x p x

C
� �

 (2.11) 

 
and the unknown function derivatives are calculated as 
 
                                                 
7

 Lancaster, P. and Salkauskas, K. (1981). Surfaces generated by moving least squares methods, 
Mathematics and. Computation, 37: 141-158. 



 4

 ( ) ( ) ( )Tˆs s s
h h

s s s
k k k

u
x x x

∂ ∂ ∂
= ⋅ = ⋅ ⋅

∂ ∂ ∂
x N x p x

u C u
� � �

 (2.12) 

 
If the point i→x x� , any value or derivative can be simplified in the form 
 
                                    ( ) 1ˆ j h ij h

i i j ju C u N u= =x  (2.13) 
 

 ( )
max

ˆ 1,  :  and 1i ij h ij qj
k j k i

k

u
D u D C q k

x d
∂

= = = +
∂
x

 (2.14) 

 

                                ( ) ( )2 4 6
2
max

2ˆ ,  :ij h ij j j
i j i iu L u L C C

d
∇ = = +x  (2.15) 

 
2.1. Consistency of the approximation 
 
The term of consistency is a useful tool to describe the ability of numerical approximation 
to reproduce a given polynomial of order p and its derivatives in an exact way. It says that 
any shape functions ( )N x  has p-order consistency if they are satisfied 
 

 ( ) ( ) ,   and 0,1,..., ;  
s j s

jq r q r
k l k l

N
q r s s p

x x x x
∂ ∂

= + = = ∀ ∈Ω
∂ ∂ ∂ ∂

x p x
p x  (2.16) 

 
where ( )p x  is a complete polynomial basis of order p. In usual MLS approximation, the 
consistency should be satisfied for all point in the domain. However, due to the fact that 
the shape function and their derivatives are discontinuous in FLS scheme, it is only 
possible to satisfy the consistency requirement (2.16) in the star point ix , where the 
weighting function is located. 
 
2.2. The weighting function 
 
There exist many possibilities for choosing the functional form of the weighting function 
that satisfies the conditions given in (2.5). In present scheme, a normalized Gaussian 
function is chosen and defined by 
 

 ( )
( ) ( )

( )

2 2

2

exp exp

1 expi

wd w

w

β
ϕ

⎡ ⎤− − −⎣ ⎦=
− −

x  (2.17) 

 
where ( )maxand  1.0id dβ γ γ= − = >x x . The support of this function is isotropic, 
circular in 2D and spherical in 3D. The parameters w and γ  govern the shape of the 
weighting function and the quality of approximation. Hence, these free parameters should  



 5

be properly set. Here, we briefly present the schemes to set the free parameters from the 
work proposed by Ortega et al.8,9. 
 Parameter γ  provides more or less weight to the boundary points of the cloud by 
increasing or decreasing the size of the weighting function’s support. Increasing of γ  
provide a bigger of the overlapping zone between neighboring clouds of points. These 
effects allow user to improving the approximation quality where highly distorted clouds of 
points happen in some regions of problem domain. In this case, good results are obtained 
by setting 1 1.25γ< < . 
 Finally, the very importance parameter is the parameter w. This parameter is 
introduced to locally adjust the shape of weighting function as shown in Figure 1. For large 
values of w, the shape of weighting function tends to the Dirac’s delta function. The shape 
function ( )jN x , also tends to the Dirac’s delta function. When the value of w is increased, 
the approximation procedure tends to interpolate nodal data. This causes the error in the 
approximation to decrease and the condition number of matrix A, ( )κ A , to increase, and 
the problem becomes more and more ill-conditioned. If the condition number go beyond 
the threshold value, i.e. ( ) ( )maxκ κ>A A , it will impossible to invert matrix A with 
accuracy. The approximation quality deteriorates quickly and numerical instabilities 
appear. 

 
 

Figure 1. Effects of the parameter w on the weighting function shape, 1.01γ = . 

                                                 
8

 Ibid. 6. 
9

 Ortega, E., Oñate, E. and Idelsohn, S. A finite point method for adaptive three-dimensional compressible 
flow calculations, In press, International Journal for Numerical Methods in Fluid. 



 6

 The numerical experiment results from 3D problem by Ortega et al.10 are used to 
be the guidance to set a range of maximum value for parameter w. An admissible range for 
maximum value are given by max3.0 4.5w≤ ≤ . In this work, a value is set to be max 3.5w =  
in the whole domain, and then it is reduced for each cloud of points whenever necessary. 
This point will be discussed later in the next section. 
 
2.3. Discretization of equations 
 
In the FLS method the weighting function is fixed at each star point of the cloud and leads 
to multi-value shape functions at the same point x�  in the whole domain, depending on 
which cloud is used to approximate the unknown function at that given point. Hence, the 
approximation is considered to be valid only at the star point of each cloud. Consequently, 
a collocation method becomes a suitable choice in FPM. 
 Although the concept of collation procedure is simple, they usually suffer from 
numerical instability of the global equation system. However, this numerical instability can 
be suppressed by introducing the stabilization term to the system of equation. This can be 
done either direct11, 12 or indirect13 ways. 

                                                 
10

 Ibid. 6. 
11

 Oñate, E. (1998). Derivation of stabilized equations for numerical solution of advective-diffusive 
transport and fluid flow problems, Computer Methods in Applied Mechanics and Engineering, 151: 233-265. 
12

 Boroomand, B., Tabatabaei, A. A. and Oñate, E. (2005). Simple modifications for stabilization of the 
finite point method, International Journal for Numerical Methods in Engineering, 63: 351-379. 
13

 Xiaozhong, J., Gang, L. and Aluru, N. R. (2004). Positivity conditions in meshless collocation methods, 
Computer Methods in Applied Mechanics and Engineering, 193: 1171-1202. 



 7

3. COMPUTATION OF THE SHAPE FUNCTIONS PARAMETERS 
 
According to WLSQ approximation in previous section, in order to compute the shape 
function N and their derivatives for a given cloud of points, the unknown coefficients α  
have to be solved formerly from the following linear system 
 
 h⋅ = ⋅A α B u  (3.1) 
 
With the matrix A and B are defined by equations (2.8) and (2.9), respectively. Due to the 
fact that u is not known in advance, this system has to be solved via inversion. The 
solution of the equations (3.1) by direct inversion of matrix A must be restricted to cases 
when the condition number ( )κ A  is moderate. In general, when the condition number 

( )κ A  is large, its inverse is not appropriate to compute the shape functions and their 
derivatives. 
 In this work, the procedure to calculate the shape function and their derivatives is 
taken from Ortega et al.14 and can be described following. Given a certain cloud of points, 
first, the inversion of matrix A is computed. If the condition number ( )κ A  is smaller than 
a given maximum admissible value the shape functions are calculated. Then, if the 
calculated shape functions satisfy some quality tests, they are accepted. If some of the 
proceeding requirements are not met, the normal equations (3.1) are solved by an 
alternative procedure based on QR factorization. 
 
3.1. Solution of the normal equations via QR factorization 
 
In general, QR factorization is a more stable and accurate method for solving least squares 
problems when the matrix A is ill-conditioned. An acceptable solution is expected from 
this procedure in case where the other procedures fail without having to modify the 
geometrical structure of the cloud. However, note that the cost of least square solution via 
QR factorization is twice as much as the solution via matrix A inversion if np m  15. The 
definition of QR factorization can be briefly described below. 
 If any matrix np×m∈P  has rank m and np m> , then it can be uniquely factored 
as 
 
 = ⋅P Q R  (3.2) 
 
where np×m∈Q  is an orthogonal matrix, i.e., T ⋅ =Q Q I  and m×m∈R  is upper 
triangular with positive diagonal entries 0iiR > . If a matrix P has rank deficient, column 
pivoting can be applied. 
 In order to solve the system (3.1) by QR factorization, it is necessary to obtain 
another equivalent form, which the weight disappears from the equation. This can be done 
by defined, 
 

                                                 
14

 Ibid. 6. 
15

 Demmel, J. W. (1997). Applied numerical linear algebra, Society for Industrial and Applied 
Mathematics. 



 8

 ( )1 2: ...i i inpdiag ϕ ϕ ϕ=Φ  (3.3) 

 
and the modification of matrix B 
 1 1 2 2 ...i i np inpϕ ϕ ϕ⎡ ⎤= ⎣ ⎦B p p p  (3.4) 

 
Recall to equations (2.8) and (2.9), matrices A and B can be rewritten into the forms, 
 
 T= ⋅A B B  (3.5) 
 
 = ⋅B B Φ  (3.6) 
 
Hence, equation (3.1) is recast into the new form, i.e. 
 
 ( ) ( )T⋅ ⋅ = ⋅ ⋅B B α B Φ u  (3.7) 
 
Then, the transpose of modified matrix (3.4) is factorized, i.e., T = ⋅Β Q R , substitute into 
(3.1), and use the orthogonal property of matrix Q, yields 
 
 ( )T h⋅ = ⋅ ⋅R α Q Φ u  (3.8) 
 
The unknown vector α  can be finally obtained by 
 
 ( )1 T h−= ⋅ ⋅ ⋅α R Q Φ u  (3.9) 
 
Here, matrix R is generally well-conditioned and due to it is upper triangular, inversion is 
easy to obtain with accuracy. The well-conditioning of matrix R can be expected, even for 
the cases when the condition number of matrix A is large. This fact reduces the 
approximation’s dependence on the spatial distribution of points and on the shape of 
weighting function significantly. 
 
3.2. An iterative procedure for calculating the shape functions 
 
To obtain high-order approximation with a given cloud of points, and attempt to avoid 
cloud regeneration, the following iterative procedure will be used to calculate the shape 
functions. This scheme is proposed by Ortega et al. 16 

First, the initial value of weighting function parameter w is set to be equal to 
maximum admissible value, i.e., int maxw w= , and the WLSQ problem (3.1) is solved via 
matrix A inversion. Then, the shape function and their derivatives are computed by (2.10) 
and (2.11), respectively. The resulting approximation is accepted if it satisfied the 
following requirements: 
 

                                                 
16

 Ibid. 6. 



 9

( )

( ) ( )
1 max

2

3

r . 

r . 1.0   and   

r . Consistency

j
ij

i
j j k

N
N tol tol

x

κ κ≤

∂
− ≤ ≤

∂∑ ∑

A

x
x  

 
The first requirement ( 1r ) imposes a limit to the condition number of matrix A, in order to 
guarantee that its inversion has an acceptable accuracy. The second requirement ( 2r ) is the 
well-known partition of unity (PU) and partition of nullities (PNs) properties, respectively. 
The last requirement ( 3r ) measures the ability to reproduce any polynomials, which their 
order are not greater than the basis polynomial, by checking the consistency requirements 
(2.16) at the cloud’s star point. Note that in the last requirement ( 3r ), the tolerance 
parameter tol is also used. Generally, the values adopted for setting maxκ  and tol depend on 
the problem under consideration. In this work a value 6

max 10κ =  based on the infinite norm 
and the parameter 1010tol −=  are adopted. The consistency check ( 3r ) is performed 

according to the guidelines given by Lohner et al.17. 
 If any of the preceding requirements is not satisfied, the approximation is rejected, 
and the solver changes to the QR factorization based methodology (3.9), by keeping all 
approximation parameters constant. The above requirements are checked again, but the 
first requirement ( 1r ) is changed to be, 
 

( )1 maxr . κ κ′ ≤R . 
 
If the requirements 1r′ , 2r  and 3r  are not satisfied, the parameter w is reduced by 25 per 
cent, then equation (3.9) is recalculated. This procedure is repeated until all requirements 
are satisfied or parameter w reaches a minimum admissible value minw . Numerical 

experiments18 have shown that two or three iterations are enough. 
 Finally, if a local cloud of points does not allow, i.e. the parameter w reaches a 
minimum value, the cloud points are regenerated by increase the size of the clouds. Even 
though the regeneration of clouds is very time consuming, it is needed only for a few 
problematic clouds, which in general, represent a small percent of the overall clouds. 
Consequently, the computational efficiently is not affected in a large extent. 

                                                 
17

 Ibid. 2. 
18

 Ibid. 6. 



 10

4. GENERATION OF LOCAL CLOUDS 
 
Any WLSQ approximation in FPM requires the construction of a local cloud of points for 
all star points in the domain. The quality of local approximation depends on the number of 
points in the cloud and their spatial distribution with respect to the star point. 
 In this section, the methodology to generate the cloud points is taken from Ortega 
et al.19. Only two geometrical restrictions are concerned to make sure that all cloud points 
can ‘see’ the star point when they have a concave boundary pass through the group of close 
points (relate to the star point). Hence, these two restrictions are designed for every star 
point in the domain which is located either over a surface or sufficiently close to a surface. 
Suppose that normal vector of all those points over a surface are known, and the search 
radius ( searchr ) is set. The restrictions for cloud point’s inclusion and local clouds 
construction are described below. 
 
4.1. Star point located over a surface boundary 
 
In this case (Figure 2), any points which are the candidate of cloud point is accepted if they 
satisfy the following conditions 
 

 ( ) ( )
T

cos cos  where cos :
2

i j

i j

πθ δ θ
⋅⎛ ⎞≥ + =⎜ ⎟ ⋅⎝ ⎠

n r
n r

 (4.1) 

 
 ( )T:t

j j i j i searchr rα= − ⋅ <r n r n  (4.2) 

 
Condition (4.1) determines an acceptable domain around the star point, which is defined in 
the normal direction to the surface in  at the star point. The parameter δ  is a small angle, 
represent a surface curvature. The second condition (4.2) is a specification of an aspect 
ratio to the cloud, obtain from parameter 0α > . 
 

2π

δ
jx

ix

in jr

t
jr

θ

 
 

Figure 2. Construction of local clouds when the star point is located over a boundary. 

                                                 
19

 Ibid. 6. 



 11

 
4.2. Cloud of points intercepting a boundary 
 
In this case (Figure 3), the point located over a surface nearest to the star point ix , namely 

jneax , must be sought. Then, any candidate point is accepted to be the cloud if 

 ( ) ( )
T

cos cos  where cos :
2

jnea j

jnea j

πθ δ θ
⋅⎛ ⎞≥ + =⎜ ⎟ ⋅⎝ ⎠

n r
n r

 (4.3) 

 
and no restriction is imposed to the aspect ratio of the cloud of points. 
 

2π

δ
jx

jneax

jnean jrθ
ix

 
 

Figure 3. Construction of local clouds when a cloud of points intercepting a boundary. 
 
4.3. Local clouds construction 
 
Given a point discretization of the domain and a set of normal vectors belonging to the 
edges (i.e., line element in 2D and triangular element in 3D) that bounds this domain, a 
maximum ( maxnp ) and minimum ( minnp ) allowable number of cloud points and an initial 
search radius ( searchr ) are set. The constructions of cloud for all star points are as follows: 
 

do: For each star point ipoin; 
  Initialize the search region around ipoin; 
  while: not enough close points ( min maxcnp n np≤ ≤ ): 
   Enlarge the search region; 
   Obtain the points in the search region (i.e., using octree technique); 

Remove, from the close points, those whose not satisfy equations 
(4.1) and (4.2), or (4.3); 

  endwhile 
  Produce a Delaunay grid with the local points; 

while: order of an approximation is more than one: 
Initialize the local cloud list with the first layer of nearest 
neighbours; 
If the requirements 1 2 3r , r  and r  are satisfied: exit; 



 12

do: For all close points, according to increasing distance : 
Add further points, in groups of 4 for 2D case and 6 for the 
3D case, to the local cloud; 

 If the requirements '
1 2 3r , r  and r  are satisfied: exit; 

enddo 
As no proper cloud was found: change to QR solver; 
If requirements '

1 2 3r , r  and r  are satisfied: exit; 
while: ( )minw w> : 
 Reduce the value of parameter w by 25 per cent; 
 If requirements '

1 2 3r , r  and r  are satisfied: exit; 
endwhile 
As no proper cloud was found: increase the search region; 

  endwhile 
 enddo 
 
Above pseudo code roughly describe the idea of local cloud construction. Note that the 
requirements ( )'1 1 2 3r r , r  and r  are listed in previous section (section 3). 



 13

5. SOLVING THE SHALLOW WATER EQUATIONS 
 
The two-dimensional shallow water equations (SWEs) describe flow in shallow water 
bodies. They can be derived from three-dimension incompressible Navier-Stokes equations 
by integrate through the vertical direction and assume that the vertical acceleration within 
the fluid is negligible and the pressure is hydrostatic20. The 2D SWEs are written as21 
 

 
l l

l lt x x
∂ ∂ ∂

+ − =
∂ ∂ ∂
U F G S  (5.1) 

 
where U is the vector of the conservative variables, 1 2and F F  are the convective fluxes, 

1 2 and G G  are the diffusive fluxes, and S  is the vector of source terms. They are given as 
 

 

( )
( )

1
2

1 2 1 1

2 3 2 2

1, 1 1 2

2, 2 2 1

1,  ,  : ,
2

0 0
,  

k
k

k k

k k

k
k o f

k o f

h U hu
hu U hu u p p gh
hu U hu u p

vhu gh Sf S hC u
vhu gh Sf S hC u

δ
δ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= = − + +⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ − + −⎣ ⎦ ⎣ ⎦

U F

G S

 (5.2) 

 
where h is the water depth, ku  is depth-averaged velocities in -directionkx , 1, 2, and k ku u  
are derivatives of the depth-averaged velocity components, g is the acceleration due to 
gravity, kSf  represent the bottom friction terms, okS  are the bed slope terms, fC  is the 
Corolis parameter and v is the kinematic viscosity coefficient. The quantities kSf  are the 
slopes of the energy grade lines in -directionkx , and are determined from the steady-state 

friction formulae (in SI units)22: 
 

 
2

4/3: f k
k

n u
Sf

h
=

u
 (5.3) 

 
where fn  represents Manning’s roughness coefficient, and 
 
 2 2

1 2u u= +u  (5.4) 
 
Also, note that the bottom friction okS  may be defined by the undisturbed depth of water, 
namely ( )H x , viz. 
                                                 
20

 Ibid. 4. 
21

 Wang, Ji-Wen and Liu, Ru-Xun (2005). Combined finite volume-finite element method for shallow water 
equations, Computers and Fluids, 34: 1199-1222. 
22

 Glaister, P. (1993). Flux difference splitting for open-channel flows. International Journal for Numerical 
Methods in Fluids, 16: 629-654. 



 14

 

 :ok
k

HS
x
∂

= −
∂

 (5.5) 

 
Here, we complete the SWEs. The discretization scheme of these equations will be 
discussed below. The conservative variables and fluxes in (5.1) will be approximated by 
WSLQ in the forms (see equation (2.13)), 
 

 

( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( )

1ˆ

ˆ

ˆ

ˆ

j h ij h
i i i j j

ij h
i i j

hk k ij k
i i j

hk k ij k
i i j

C N

N

N

N

≈ = =

≈ =

≈ =

≈ =

U x U x U U

S x S x S

F x F x F

G x G x G

 (5.6) 

 
It is important to note that the nodal parameter, i.e. ( )h• , do not coincide with the 

approximated parameter ( )•̂  because in the WLSQ approximation, the shape function is 
not satisfy Kronecker delta property. Hence, if the fully explicit scheme time integration is 
performed to solve for the discretized system of (5.1), we obtain the approximated 
parameter ( )ˆ

iU x  at star point, which implies that additional linear system must be solved 

in order to get the nodal parameter h
jU  at star point. Fortunately, this equation system has 

excellent properties and can be solved by a few iterations of a Gauss-Seidel method or 
another similar scheme23. Henceforth, the markers ( )h•  and ( )•̂  will be omitted for the 
sake of simplicity. 
 
5.1. Discretization of convective fluxes 
 
From expressions (2.14) of the WLSQ approximation procedure, we obtain the following 
expression for the divergence of the convective flux function: 
 

 ( ):
l

ii ij l
l j

l

D
x

∂
= ≈

∂
F x

FF  (5.6) 

 
with ij

lD  are defined in equation (2.14). Then, take advantage of the PNs property of the 
shape function derivatives, viz. 
 
 | 0 |ii ij ii ij

l l j i l l j iD D D D≠ ≠+ = → = −  (5.7) 
 
where the special linear operator are defined, ( ) ( )| :ij ij

l j i l
j i

D D≠
≠

• = •∑ . Substitute (5.7) into 

equation (5.6), yields 

                                                 
23

 Enrique Ortega (2007). A finite point method for three-dimensional compressible flow, Thesis Project, 
CIMNE, Barcelona. 



 15

 ( )|i ij l l
l j i j iD ≠= −F FF  (5.8) 

 
In general, flux in equation (5.8) is unstable and needs to be stabilized. Equivalent form of 
(5.8) can be constructed by replace l

jF  with their midpoint value, denoted by l
ijF , and then 

extrapolate them via multiplying factor of 2, obtained 
 
 ( )2 |i ij l l

l j i ij iD ≠= −F FF  (5.9) 
 
The flux l

ijF , may be imagined as the numerical flux vector at the midpoint of the line 
segment connecting the star point ix  to another point j i∈Ωx  in Figure 4. To obtain 
stabilized solution of (5.1), this numerical flux will be redefined and calculated by an 
approximated Riemann solver24, which naturally provides the required dissipation for the 
semi-discrete expression. 
 
5.1.1. Roe solver 
 
The Cartesian components of the midpoint numerical flux, derived by Roe 25 and applied 
to Riemann solver 26, are obtained by 
 

 ( ) ( ) ( )L R L R R L
1 ˆ: ,
2

k k k k
ij A n⎡ ⎤= + − ⋅ −⎣ ⎦F F F U U U U�  (5.10) 

 
where A�  is the flux Jacobian matrix of the fluxes along direction :ji j i= −l x x , see in 

Figure 4, evaluated by Roe’s average variables, and ˆkn  is a k-th component of unit vector 
n̂  in the direction of vector jil . Subscripts R and L refer to the right and left stage of 
midpoint between  and i jx x  in the direction jil , respectively. 
 

n̂

jx

ix

 
 

Figure 4. The unit vector along the line-segment in two-dimensional. 

                                                 
24

 Roe, P. L. (1981). Approximate Riemann solvers, parameter vectors and difference schemes, Journal of 
Computational Physics, 43: 357-372. 
25

 Ibid. 
26

 Ibid. 2. 



 16

 
Generally, the flux Jacobian matrix A  is given by 
 

 ( ) ( )
( )

1 2

2 2 1 2 1 2 2
1 1 2 1 2 1

2 2 2 1 1 2 1
2 1 2 2 2 1

ˆ ˆ0
ˆ

ˆ ˆ ˆ ˆ ˆ2

ˆ ˆ ˆ ˆ ˆ2

n n

A c u n u u n u n u n u n

c u n u u n u n u n u n

⎡ ⎤
⎢ ⎥∂ ⋅ ⎢ ⎥= = − − +

∂ ⎢ ⎥
⎢ ⎥− − +⎣ ⎦

F n
U

 (5.11) 

 
where c gh=  is the wave celerity, and note that ˆ ˆ: l l

ijn⋅ =F n F . 

The Roe’s average value of 1 2,  and u u c  are defined by 1 2,  and ij ij iju u c� � � , respectively. 
These values can be expressed as 
 

 
( )

R R L L

R L

R L

2

k k
k
ij

ij

u h u h
u

h h

g h h
c

+
=

+

+
=

�

�

 (5.12) 

 
The average Roe’s velocities k

iju�  can be computed in a more efficient way27 with the help 

of an auxiliary variable R L:r h h= . Introducing this variable into first row of equations 
(5.12), obtain 
 

 R L

1

k k
k
ij

ru uu
r
+

=
+

�  (5.13) 

 
Finally, to complete the computing procedure for equation (5.10), we will use the 
knowledge from modal analysis of flux Jacobian matrix A�  to compute the last term of this 
equation efficiently. The eigenvalues of A�  are given by 
 

 

1

2

3

ˆ

ˆ

ˆ

l l
ij ij

l l
ij

l l
ij ij

u n c

u n

u n c

λ

λ

λ

= +

=

= −

� � �
� �
� � �

 (5.14) 

 
and its eigenvectors are given by 
 

 1 1 1 2 2 3 1 1

2 2 1 2 2

1 0 1
ˆ ˆ ˆ,  ,  .
ˆ ˆ ˆ

ij ij ij ij ij

ij ij ij ij ij

u c n c n u c n
u c n c n u c n

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + = − = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

e e e� � �� � � � �
� � � � �

 (5.15) 

 
Then the numerical flux (5.10) can be evaluated as 

                                                 
27

 Ibid. 23. 



 17

 

 ( )
3

L R
1

1 ˆ:
2

k k k k
ij nφ φ φ

φ

α λ
=

⎡ ⎤⎛ ⎞
= + −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑F F F e�� �  (5.16) 

 
The variables φα�  are the coefficients of the decomposition in the basis of eigenvectors of 
matrix A� , which are derived from the properties 
 

 
3

R L
1

.φ φ

φ

α
=

− =∑U U e� �  (5.17) 

 
Hence, the values of φα�  depend on the jumps ( ) ( ) ( )R L

:Δ = −i i i  and are given by 
 

 
( ) ( )

( ) ( ){ }

1,3

2 2 1 1 2
2 1

1 ˆ ˆ ,
2 2

1 ˆ ˆ .

l l l
l ij

ij

ij ij
ij

h hu n u n h
c

hu u h n hu u h n
c

α

α

Δ ⎡ ⎤= ± Δ − Δ⎣ ⎦

⎡ ⎤ ⎡ ⎤= Δ − Δ − Δ − Δ⎣ ⎦ ⎣ ⎦

� �
�

� � �
�

 (5.18) 

 
Above equations, (5.10) to (5.18), are general descriptions and computational procedures 
to any order of accuracy for Roe’s fluxes. However, when only the first order fluxes in 
(5.10) are considered, the right (R) and left (L) stage values are replaced simply by values 
at node j and i, respectively, i.e. 
 

 ( ) ( ) ( )1 ˆ: ,
2

k k k k
ij i j i j j iA n⎡ ⎤= + − ⋅ −⎣ ⎦F F F U U U U�  (5.19) 

 
Next, we will discuss how to obtain the fluxes in (5.10) more accurate than first order, i.e. 
equation (5.19). 
 
5.1.2. Higher order schemes 
 
The low-order scheme, equation (5.20), in the previous section is useless in practice. In 
order to achieve a scheme of order higher than one, the amount of dissipation must be 
reduced. This implies reducing the magnitude of the difference j i−U U  by replacing the 

zero-order extrapolation of the variables ( )L R:  and :i j= =U U U U  at the midpoint 

( ): 2ij i j= +x x x  by a higher-order extrapolation. 
The MUSCL (Monotone Upstream-centered Schemes for Conservation Laws) 

methodology28 allows achieving second and third-order accuracy of fluxes in (5.10) using 
linear and quadratic reconstruction (extrapolation) of the conservative variables 
respectively. The assumption is made that the function behaves smoothly in the vicinity of 
point ijx  along the edge connected point i and j. This allows the reconstruction of alternate 

                                                 
28

 Van Leer, B. (1979). Towards the ultimate conservative difference scheme: V. A second order sequel to 
Godunov’s method, Journal of Computational Physics, 32: 101-136. 



 18

values of right and left stages, denoted by and j i
− +U U , respectively. This lead to a flux 

function of the form 
 

 ( ) ( ) ( )1 ˆ: ,
2

k k k k
ij i j i j j iA n+ − + − − +⎡ ⎤= + − ⋅ −⎣ ⎦F F F U U U U�  (5.20) 

 
where 
 
 ( ) ( ) and k k k k

i i j j
+ + − −= =F F U F F U  (5.21) 

 
The upwind-biased approximations for and i j

+ −U U  are defined by 
 

 
( ) ( )( )

( ) ( )( )

1 1 1
4
1 1 1
4

i i i j i

j j j j i

κ κ

κ κ

+ −

− +

⎡ ⎤= + − Δ + + −⎣ ⎦

⎡ ⎤= − − Δ + + −⎣ ⎦

U U U U U

U U U U U
 (5.22) 

 
where the forward and backward operators are given by 
 

 
( )
( )

1

1

: 2

 : 2

j j j ji j j i

i i i ji i j i

+
+

−
−

Δ = − = ⋅∇ − −

Δ = − = ⋅∇ − −

U U U l U U U

U U U l U U U
 (5.23) 

 
In equations (5.23), we note that the variables 1 1and j i+ −U U  are presumed variables, to the 
purpose of derivation with respect to one-dimensional case. Hence, in present work, 
gradients of conservative variable, i.e.  and j i∇ ∇U U , are used to compute the forward and 
backward difference in equation (5.23). The parameter κ  can be chosen to control the 
degree of approximation. Set the value of parameter κ  to be -1 and +1 lead to a second-
order rightward-biased and centered approximations respectively, while 1

3κ =  results in a 

third-order scheme29. 
 
5.1.3. Limiting 
 
The Godunov’s theorem30 states that no linear scheme of order higher than one is free of 
oscillations. This implies that with the higher order extension in previous subsection, some 
form of limiting in conservative variable will be required. Limiting is still an area of active 
research and numerous approaches can be found in the literature, see for instance31. In 
present work, two approaches for limiting the extrapolation slopes in the MUSCL 

                                                 
29

 Hirsch, C. (1991). Numerical Computation of Internal and External Flows, vol. II: Computational 
Methods for Inviscid and Viscous Flows, Wiley, New York. 
30

 Ibid. 
31

 Ibid. 2, 27 and 28. 



 19

technique are proposed. The first approach is the minmod limiter32, and the second one 
uses the Van Albada limiter33. 
 
5.1.3.1. The minmod limiter. The reconstruction given by an equation (5.22) do not 
generate oscillations if i i j

+≤ ≤U U U , and i j j
−≤ ≤U U U  with the differences 

( ),   and i j j i
− +Δ Δ −U U U U  have the same sign. This can be expressed into the following 

relations: 
 

 3 ;  1, 2,3.
1

a a a
i j iU U U aκ

κ
− −

Δ ≤ − =
−

 (5.24) 

 
and 
 

 3 ;  1, 2,3.
1

a a a
j j iU U U aκ

κ
+ −

Δ ≤ − =
−

 (5.25) 

 
To ensuring all these conditions, the reconstruction of the variables is performed in the 
following manner 
 

 

( ) ( ){
( ) ( ) }
( ) ( ){
( ) ( ) }

1 1 ,
4

                     1 ,  ;  1, 2,3

1 1 ,
4

                     1 ,  ;  1, 2,3

a a a a a
i i m i j i

a a a
m j i i

a a a a a
j j m j j i

a a a
m j i j

U U U b U U

U U b U a

U U U b U U

U U b U a

κ φ

κ φ

κ φ

κ φ

+ −

−

− +

+

⎡ ⎤= + − Δ − +⎣ ⎦

⎡ ⎤+ − Δ =⎣ ⎦

⎡ ⎤= − − Δ − +⎣ ⎦

⎡ ⎤+ − Δ =⎣ ⎦

 (5.26) 

 
where a is used to represent the number of unknowns (i.e. conservative variables), and b is 
so-called compression parameter and is defined according to ( ) ( )1 3 1b κ κ≤ ≤ − − , the 
choice of 1b =  leads to a more dissipative scheme. The minmod function, denoted by mφ , 
can be expressed as 
 
 ( ) ( ) ( )( ), sgn 0,min ,sgnm x y x x x yφ ⎡ ⎤= ⋅ ⋅⎣ ⎦  (5.27) 
 
This function will give an argument, either x or y, which has a smallest absolute value if 
they have the same sign, otherwise returns a zero value. 
 
5.1.3.2. The Van Albada limiter. The upwind-biased interpolations in (5.22) are replaced 
by 
 

                                                 
32

 Ibid. 23. 
33

 Ibid. 2. 



 20

 
( ) ( )( )

( ) ( )( )

1 1  ;  1, 2,3  
4

1 1  ;  1, 2,3
4

a
a a a a a a ai
i i i i i j i

a
ja a a a a a a

j j j j j j i

sU U s U s U U a

s
U U s U s U U a

κ κ

κ κ

+ −

− +

⎡ ⎤= + − Δ + + − =⎣ ⎦

⎡ ⎤= − − Δ + + − =⎣ ⎦

 (5.28) 

 
with no sum on a. The flux limiters a

is  and a
js  are defined by 

 

 

( )
( ) ( )

( )
( ) ( )

2 2

2 2

2
max 0,  ;  1, 2,3

2
max 0,  ;  1, 2,3

a a a
i j ia

i a a a
i j i

a a a
j j ia

j a a a
j j i

U U U
s a

U U U

U U U
s a

U U U

ε

ε

ε

ε

−

−

+

+

⎧ ⎫Δ ⋅ − +⎪ ⎪= =⎨ ⎬
Δ + − +⎪ ⎪⎩ ⎭

⎧ ⎫Δ ⋅ − +⎪ ⎪= =⎨ ⎬
Δ + − +⎪ ⎪⎩ ⎭

 (5.29) 

 
where ε  is a very small number to prevent division by zero in smooth region of the flow. 
Notice that the values of limiters in (5.29) are bounded between 0 and 1. When the values 
of limiters are equal to zero, equations (5.28) represent the first order scheme, while 
limiters equal to unity recover the higher order schemes. 
 Naturally, the minmod limiter leads to more dissipative results than the Van Albada 
limiter. Hence, in some cases when the Van Albada limiter allows the oscillation to be 
appeared, adoption of the minmod limiter should be more suitable. 
 
5.1.4. Lower bound of wave speeds 
 
The acoustic eigenvalues 1λ�  or 3λ�  are vanished at critical flow point (i.e. Froude number 
equal to unity), and the eigenvalue 2λ�  goes to zero at stagnation point. Vanishing of 
eigenvalues could cause misbehavior of the dissipation terms in (5.17), and leads to 
numerical instabilities for particular flow conditions. 
 A simple way to overcome this problem is limiting the minimum absolute value of 
all eigenvalues to a fraction of the Jacobian matrix spectral radius ( )Aρ � , viz. 

 

 

( )
( )
( )

1 1

2 2

3 3

max ,

max ,

max ,

A

A

A

λ λ αρ

λ λ βρ

λ λ αρ

⎡ ⎤← ⎣ ⎦
⎡ ⎤← ⎣ ⎦
⎡ ⎤← ⎣ ⎦

� � �

� � �

� � �

 (5.30) 

 
where ( ) ˆl l

ij ijA u n cρ = +� � � , the parameters 0.2 and 0.1α β≈ ≈ . Note that this limiting is 

corresponding with entropy correction scheme in Euler equations34. 
 
 
 

                                                 
34

 Ibid. 23. 



 21

5.2. Discretization of diffusive fluxes and source terms 
 
Discrete form of diffusive fluxes and source terms are simpler than the convective fluxes. 
They no need to be stabilized. Again, from expressions (2.14) of the WLSQ approximation 
procedure, we obtain the following expression for the divergence of the diffusive (viscous) 
flux function: 
 

 ( ):
l

ii ij l
l j

l

D
x

∂
= ≈

∂
G x

GG  (5.31) 

 
with ij

lD  are defined in equation (2.14). Also, the source terms are expressed in the form 
below, 
 
 ( ): .i ij

i jN= ≈S x SS  (5.32) 
 
Now, we have all information to perform time integration, which solves for conservative 
variables U. 
 
5.3. Discretization in time 
 
From equations (5.1), and the discretization of the fluxes in expressions (5.20), (5.31) and 
(5.32), we obtain the following system of ODEs for the conservative variables: 
 

 
ˆ

:i i i ii

t
∂

= = − +
∂
U R G F S  (5.33) 

 
This system of ODEs is integrated explicitly in time with a multistage Runge-Kutta 
scheme. Assume that the vector h

iU  of conservative variables are known for all star point 
at time nt t= . The right hand side vector iR  is computed for each star point with current 

stage of conservative variables 
1

n
h h

ii=
=U UA  (assemble of h

iU  for all star points), i.e. 

( ):i i h=R UR . The vector of conservative variables at time 1nt +  is obtained by q-stage 
Runge-Kutta scheme, viz. 
 
 ( ) ( )1ˆ ˆ , 1, 2,...,s i sn

i i s it s qα −= + Δ =U U R  (5.34) 
 
where ( ) ( )0 1ˆ ˆ ˆ ˆ and qn n

i i i i
+← ←U U U U . Time step itΔ  is evaluated at the star point ix , and sα  

are coefficient that depend on the numbers of stages (q). For two, three and four stages 
schemes these coefficients are set as follows: 
 

1 2

1 2 3

1 2 3 1

2 1 2  and 1.0
3 3 5 and 1.0
4 1 4, 1 3, 1 2  and 1.0

q
q
q

α α
α α α
α α α α

= → = =
= → = = =
= → = = = =

 

 



 22

Each stage in (5.34) have to be ended up with computation of nodal parameter hU , which 
will be used to calculate the right hand side vector iR  of current stage. The following 
linear system has to be solved 
 
 ˆh

c ⋅ =M U U  (5.35) 
 
where cM  is the equivalent consistent mass matrix of the system, which results from the 

assemble of the shape function matrix, ( )ij ij ij ijdiag N N N=N  and 
1

ˆ ˆn

ii=
=U UA . This 

equation system can be solved by simple iteration scheme easily. The rate of convergence 
is excellent; require only a few iterations35. 
 
5.3.1. The time step calculation and stability requirements 
 
Since the multistage Runge-Kutta scheme presented above is explicit, the local time step 

itΔ  for each star point ix  must be restricted by a CFL (Courant-Friedriches-Lewy) 
condition. The time step constraint is of the form 
 
 ( )ad difmin , ,i j j j ij i

t Cr t t
≠

Δ = Δ Δ ∀ ∈Ωx  (5.36) 

 
with 

 
( )

ad
max max

2

dif

max ,

2

ji
j

j i

ji
j

t

t
v

λ λ
Δ =

Δ =

l

l
 (5.37) 

 
where :ji j i= −l x x  is the vector link between two points and i jx x  (Figure 4), v is the 
kinematic viscosity coefficient, and 
 

 
max

max

ˆ

ˆ

k k
i i i

k k
j j j

u n c

u n c

λ

λ

= +

= +
 (5.38) 

 
are the maximum wave speeds in the direction of jil . The Courant number Cr is restricted 
to 1Cr < . The adoption of a local time step itΔ  in equation (5.34) is suitable for stationary 
problem. If we need an accurately transient solution, a global time step must be used 
instead, i.e. i gt tΔ ← Δ . This global time step is defined by 

 ( )min , .g i ii
t tΔ = Δ ∀ ∈Ωx  (5.39) 

 
 
 
                                                 
35

 Ibid. 2. 



 23

5.4. Boundary conditions 
 
In this work three type of boundary conditions are concerned. The first kind is so called 
far-field conditions, applied on outer boundary denoted by ∞Γ , the second kind is the 
normal velocity conditions, applied on boundary denoted by wΓ , and the third kind is the 
no-slip boundary condition, denoted by oΓ . Note that these three types of boundary cover 
whole problem domain, i.e. w o∞Γ = Γ ∪Γ ∪Γ . 
 
5.4.1. Far-field boundary conditions 
 
For each star point on the outer boundary i ∞∈Γx  and their unit outward normal vector 
ˆ ∞n , the normal component of convective flux is modified according to far-field state ∞U . 
Given the original convective flux k

iF , their normal component can be obtained, 
 
 ˆk k

n i n∞=F F  (5.40) 
 
Also, the far-field state normal flux vector is given by 
 
 ( ) ˆ .k kn∞ ∞ ∞=F F U  (5.41) 
 
Then, the new normal flux vector is expressed by the solution of the approximate Riemann 
problem between and i ∞U U , viz. 
 

 ( ) ( ) ( )1: ,
2n n i iA∗

∞ ∞ ∞
⎡ ⎤= + − ⋅ −⎣ ⎦F F F U U U U�  (5.42) 

 
Note that the Roe matrix on above equation is calculated in the direction of outward unit 
normal vector ˆ ∞n  on the outer boundary. Finally, the modified flux vectors in Cartesian 
coordinate at i ∞∈Γx  are obtained 
 
 ( ) ˆk k k

i i n n n∗
∞= + −F F F F  (5.43) 

 
The modified flux vectors given above are computed for all i ∞∈Γx  in each time step. 
Replace them to original convective flux, i.e. k k

i i←F F . 
 
5.4.2. Normal velocity boundary conditions 
 
The most well-known of this boundary condition is so-called slip wall boundary condition, 
which set the normal component of velocity to be zero. However, for generalized them, in 
present work we set normal velocity to be any prescribed value, namely 
 
 T

w w wˆ ˆ , .l
l iu n u⋅ ≡ = ∀ ∈Γu n x  (5.44) 

 



 24

where wn̂  is the unit normal outward vector to the boundary point wi ∈Γx , and u  is the 
prescribed value of normal velocity. For each time step, the velocity value at wi ∈Γx  are 
modified as follows 
 
 ( )T

w w wˆ ˆ , .iu← + − ⋅ ∀ ∈Γu u u n n x  (5.45) 
 
where the velocity vectors on the right hand side are an original one. 
 
5.4.3. No-slip boundary conditions 
 
This type of boundary conditions will be considered when viscosity effect has been 
represented. The implementation of no-slip boundary condition is very simple. All 
components of velocity are set to be zero, i.e. 
 
 o, .i← ∀ ∈Γu 0 x  (5.46) 
 
Conditions (5.46) are equivalent to set the normal and tangential velocities to be zeros. 



 25

6. NUMERICAL EXAMPLES 
 
Three test problems are considered to assess the schemes present in Section 5. The 
Van Albada limiter is adopted for all tests. The time step is limited by formulas (5.37) 
to (5.40). The Courant number is set to 0.5. Two stage Runge-Kutta is used to 
perform time integration in equation (5.35). 
 
6.1. Oblique hydraulic jump 
 
The geometry is a 40 m long flat-bottomed channel where the upstream entry width of 
30 m is narrowed to the exit by a converging wall deflected through an angle 

o8.96θ =  (Figure 11). The initial conditions are chosen to be 
1 21 m, 8.57 m/sec and 0.h u u= = =  Supercritical boundary conditions are imposed on 

the upstream boundary (left-side) with the same value as initial conditions. Friction 
along the channel walls (top and bottom) is ignored. Local time step is used to 
observe the steady state result. 
 The global cloud of 1309 points is used to discretized the problem domain. 
The result is presented as a depth contour plot in Figure 12. The angle of shock front 
β , is measured and its value approximately equal to 30o, which close to analytical 

solution36. 
 

 
Figure 11. Cloud points of oblique hydraulic jump problem (1309 points). 

 

                                                 
36

 Ibid. 21. 



 26

o30β ≈

 
 

Figure 12. Depth contour plot for oblique hydraulic jump. 
 
6.2. 1D dam break 
 
In this test, we consider a straight channel modeled in 2D, with the headwater and tail 
water separated by a rigid diaphragm (dam). The viscous effect is not considered. 
Initially, the water has a different depth on each side of the dam, DL and DR (Figure 5) 
and assumed to be at rest. At initial time 0t = , the dam is instantly removed. It 
creates a bore wave moving from left to right (in x1-direction), and a depression wave 
propagating towards the left. In this case, the length of a fixed rectangular region is 
set to 1.0 m in x1-direction and 0.5 m in x2-direction with a barrier at x1 = 0.5 m. The 
model discretized by 3772 cloud points (Figure 6). The global time step is used to 
investigate the transient solution. 
 The numerical results are taken from the profile cut along x2 = 0.25 m. Exact 
solution (solid line) obtained from Wu et al. 37. The results for two different initial 
water depth ratio (DL/ DR) are plot in Figures 7 and 8. 
 

                                                 
37

 Wu, C., Huang, G. and Zheng, Y. (1999). Theoretical solution of dam-break shock wave, Journal of 
Hydraulic Engineering, November: 1210-1215. 



 27

 
 

Figure 5. 1D dam break problem 
 

 
Figure 6. Cloud point of 1D dam break problem (3772 points). 

 

 
 

Figure 7. Water elevation after dam break with initial water depth ratio DL/DR = 10 (t = 0.25 s). 



 28

 

 
Figure 8. Water elevation after dam break with initial water depth ratio DL/DR = 100 (t = 0.25 s). 

 
6.3. Flow past a backward step 
 
A steady flow past a backward step is examined and the reattachment length of the 
flow field is calculated. This problem has been studied numerically by Wang and 
Liu38. The step dimension is 1 m, the upstream boundary is located at a distance 12 m 
from the step and the downstream boundary is at a distance 13 m form the step as 
shown below in Figure 9. 
 

 
 

Figure 9. Cloud point of backward facing step problem (1577 points). 
 

                                                 
38

 Ibid. 21. 



 29

3.97
 

 
Figure 10. Streamline plot for flow past a backward step. 

 
The initial water depth is taken to be unity. A no-slip wall boundary condition is used. 
At the inflow boundary, a velocity 0.5 m/sec is prescribed. A still water level of 1 m is 
prescribed at the outflow boundary. The kinetic viscosity coefficient is set to be 
0.00685 m2/sec. In this problem the local time step is used to investigate the steady 
solution. The computed streamline near the step is shown in Figure 10. The measured 
value for the length of the recirculation region is about 3.97.m which is very close to 
3.95 m given in Wang and Liu. 39 
 
6.4. Flow in a sloping channel with varying width 
 
Consider the flow in a channel with a smooth constriction and a sloping bottom 
surface. The channel is 10000 m long, and the breadth varies from 1000 m to 500 m, 
and to 1000 m (Figure 13) with a cosine function. The bed slope is taken to be a 
constant value of 1:100 (downward). At the left end the mass flow 32000 m secQ = , 
is specified, and at the right end the depth is specified by extrapolation from the 
interior. Initial water depth is specified to be 1 m. Local time step is used. 

The results are taken from the center line of channel. Water depth profile in 
Figure 14 varies in similar with a cosine function. The mass flow Q in Figure 15 
(solid line) is closely to the value of 32000 m sec , which refers by blue-dot line. 
 

                                                 
39

 Ibid. 



 30

Longitudinal Distance (m)  
 

Figure 13. Cloud points of a channel with varying width (5584 points). 
 

 
Figure 14. A plot of water depth along the center line of channel. 

 



 31

 
 

Figure 15. A plot of mass flow along the channel. 
 



 32

7. CONCLUSIONS 
 
The finite point method for shallow water flow has been developed. Starting form a 
global cloud of points, we used a robust iterative scheme to compute a local 
approximation for shape functions and gradients. These approximation factors are 
used to incorporate with approximate Riemann solvers. The results obtained show 
accuracy close to available analytical and experimental solutions. 
 Simulation of shallow water flow in large scale may suffer due to the 
complication of the source term, e.g. the bathymetry slope and base shear terms. 
These sometimes cause the misbehavior and solutions are not converged. The future 
research should be study on how to improve the solution in the case of complex 
source term. Also, another interesting topic is an implementation of adaptive FPM to 
the wave climb on the sloping beach. Naturally, this problem needs the robust scheme 
to regeneration of cloud points when the borders of ocean are moved into the dry bed 
region. 
 
ACKNOWLEDGEMENTS 
 
A considerable part of this work was carried out while the author was training at the 
International Center for Numerical in Engineering (CIMNE), Barcelona, Spain, in the 
August 2008. The support for this training by Prof. Eugenio Oñate and Prof. Worsak 
Kanok-Nukulchai is gratefully acknowledged. Also, the author has to deeply thankful 
to a very great comment, discussion and kindly help from Sr. Enrique Ortega. 




