93 research outputs found

    Nonlocal chiral quark models with Polyakov loop at finite temperature and chemical potential

    Full text link
    We analyze the chiral restoration and deconfinement transitions in the framework of a non-local chiral quark model which includes terms leading to the quark wave function renormalization, and takes care of the effect of gauge interactions by coupling the quarks with the Polyakov loop. Non-local interactions are described by considering both a set of exponential form factors, and a set of form factors obtained from a fit to the mass and renormalization functions obtained in lattice calculations.Comment: 8 pages, 2 figures; prepared for IV International Workshop on Astronomy and Relativistic Astrophysics (IWARA 2009), Maresias, 4-8 Oct 200

    Quark-hybrid matter in the cores of massive neutron stars

    Get PDF
    Using a nonlocal extension of the SU(3) Nambu-Jona Lasinio model, which reproduces several of the key features of Quantum Chromodynamics, we show that mixed phases of deconfined quarks and confined hadrons (quark-hybrid matter) may exist in the cores of neutron stars as massive as around 2.1 M_Sun. The radii of these objects are found to be in the canonical range of ∼12−13\sim 12-13 km. According to our study, the transition to pure quark matter does not occur in stable neutron stars, but is shifted to neutron stars which are unstable against radial oscillations. The implications of our study for the recently discovered, massive neutron star PSR J1614-2230, whose gravitational mass is 1.97±0.04MSun1.97 \pm 0.04 M_Sun, are that this neutron star may contain an extended region of quark-hybrid matter at it center, but no pure quark matter.Comment: 13 pages, 3 figure

    Quark deconfinement in high-mass neutron stars

    Get PDF
    In this paper, we explore whether or not quark deconfinement may occur in high-mass neutron stars such as J1614-2230 (1.97 \pm 0.04 M_Sun) and J0348+0432 (2.01 \pm 0.04 M_Sun). Our study is based on a non-local extension of the SU(3) Nambu Jona-Lasinio (n3NJL) model with repulsive vector interactions among the quarks. This model goes beyond the frequently used local version of the Nambu Jona-Lasinio (NJL) model by accounting for several key features of QCD which are not part of the local model. Confined hadronic matter is treated in the framework of non-linear relativistic mean field theory. We find that both the local as well as the non-local NJL model predict the existence of extended regions of mixed quark-hadron (quark-hybrid) matter in high-mass neutron stars with masses of 2.1 to 2.4 M_Sun. Pure quark matter in the cores of neutron stars is obtained for certain parametrizations of the hadronic lagrangian and choices of the vector repulsion among quarks. The radii of high-mass neutron stars with quark-hybrid matter and/or pure quark matter cores in their centers are found to lie in the canonical range of 12 to 13 km.Comment: 31 pages, 17 figures, PRC accepted versio

    Thermal evolution of hybrid stars within the framework of a nonlocal Nambu--Jona-Lasinio model

    Get PDF
    We study the thermal evolution of neutron stars containing deconfined quark matter in their core. Such objects are generally referred to as quark-hybrid stars. The confined hadronic matter in their core is described in the framework of non-linear relativistic nuclear field theory. For the quark phase we use a non-local extension of the SU(3) Nambu Jona-Lasinio model with vector interactions. The Gibbs condition is used to model phase equilibrium between confined hadronic matter and deconfined quark matter. Our study indicates that high-mass neutron stars may contain between 35 and 40 % deconfined quark-hybrid matter in their cores. Neutron stars with canonical masses of around 1.4 M⊙1.4\, M_\odot would not contain deconfined quark matter. The central proton fractions of the stars are found to be high, enabling them to cool rapidly. Very good agreement with the temperature evolution established for the neutron star in Cassiopeia A (Cas A) is obtained for one of our models (based on the popular NL3 nuclear parametrization), if the protons in the core of our stellar models are strongly paired, the repulsion among the quarks is mildly repulsive, and the mass of Cas A has a canonical value of 1.4 M⊙1.4\, M_\odot.Comment: 10 pages, 7 figure

    Nonlocal Polyakov-Nambu-Jona-Lasinio model with wavefunction renormalization at finite temperature and chemical potential

    Full text link
    We study the phase diagram of strongly interacting matter in the framework of a non-local SU(2) chiral quark model which includes wave function renormalization and coupling to the Polyakov loop. Both non-local interactions based on the frequently used exponential form factor, and on fits to the quark mass and renormalization functions obtained in lattice calculations are considered. Special attention is paid to the determination of the critical points, both in the chiral limit and at finite quark mass. In particular, we study the position of the Critical End Point as well as the value of the associated critical exponents for different model parameterizations.Comment: v.2_August 2010, 26 pp, 8 fi

    Neutrino emissivity in the quark-hadron mixed phase of neutron stars

    Get PDF
    Numerous theoretical studies using various equation of state models have shown that quark matter may exist at the extreme densities in the cores of high-mass neutron stars. It has also been shown that a phase transition from hadronic matter to quark matter would result in an extended mixed phase region that would segregate phases by net charge to minimize the total energy of the phase, leading to the formation of a crystalline lattice. The existence of quark matter in the core of a neutron star may have significant consequences for its thermal evolution, which for thousands of years is facilitated primarily by neutrino emission. In this work we investigate the effect a crystalline quark-hadron mixed phase can have on the neutrino emissivity from the core. To this end we calculate the equation of state using the relativistic mean-field approximation to model hadronic matter and a nonlocal extension of the three-flavor Nambu-Jona-Lasinio model for quark matter. Next we determine the extent of the quark-hadron mixed phase and its crystalline structure using the Glendenning construction, allowing for the formation of spherical blob, rod, and slab rare phase geometries. Finally we calculate the neutrino emissivity due to electron-lattice interactions utilizing the formalism developed for the analogous process in neutron star crusts. We find that the contribution to the neutrino emissivity due to the presence of a crystalline quark-hadron mixed phase is substantial compared to other mechanisms at fairly low temperatures (≲109\lesssim 10^9 K) and quark fractions (≲30%\lesssim 30\%), and that contributions due to lattice vibrations are insignificant compared to static-lattice contributions.Comment: 12 pages, 10 figures; accepted for publication in the European Physical Journal A - "Hadrons and Nuclei.

    Hybrid stars with sequential phase transitions: the emergence of the g2_2 mode

    Get PDF
    Neutron stars are the densest objects in the Universe, with M∼1.4M⊙M \sim 1.4 M_{\odot} and R∼12R \sim 12 km, and the equation of state associated to their internal composition is still unknown. The extreme conditions to which matter is subjected inside neutron stars could lead to a phase transition in their inner cores, giving rise to a hybrid compact object. The observation of 2M⊙2M_{\odot} binary pulsars (PSR~J1614-2230, PSR~J0343++0432 and PSR~J0740++6620) strongly constraints theoretical models of the equation of state. Moreover, the detection of gravitational waves emitted during the binary neutron star merger, GW170817, and its electromagnetic counterpart, GRB170817A, impose additional constraints on the tidal deformability. In this work, we investigate hybrid stars with sequential phase transitions hadron-quark-quark in their cores. We assume that both phase transitions are sharp and analyse the rapid and slow phase conversion scenarios. For the outer core, we use modern hadronic equations of state. For the inner core we employ the constant speed of sound parametrization for quark matter. We analyze more than 3000 hybrid equations of state, taking into account the recent observational constraints from neutron stars. The effects of hadron-quark-quark phase transitions on the normal oscillation modes ff and gg, are studied under the Cowling relativistic approximation. Our results show that, in the slow conversion regime, a second quark-quark phase transition gives rise to a new g2g_2~mode. We discuss the observational implications of our results associated to the gravitational waves detection and the possibility of detecting hints of sequential phase transitions and the associated g2g_2~mode.Comment: 24 pages, 9 figure
    • …
    corecore