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Abstract. Neutron stars are the densest objects in the Universe, with M ∼ 1.4M� and
R ∼ 12 km, and the equation of state associated to their internal composition is still unknown.
The extreme conditions to which matter is subjected inside neutron stars could lead to a phase
transition in their inner cores, giving rise to a hybrid compact object. The observation of
2M� binary pulsars (PSR J1614-2230, PSR J0343+0432 and PSR J0740+6620) strongly con-
straints theoretical models of the equation of state. Moreover, the detection of gravitational
waves emitted during the binary neutron star merger, GW170817, and its electromagnetic
counterpart, GRB170817A, impose additional constraints on the tidal deformability. In this
work, we investigate hybrid stars with sequential phase transitions hadron-quark-quark in
their cores.We assume that both phase transitions are sharp and analyse the rapid and slow
phase conversion scenarios. For the outer core, we use modern hadronic equations of state.
For the inner core we employ the constant speed of sound parametrization for quark mat-
ter. We analyze more than 3000 hybrid equations of state, taking into account the recent
observational constraints from neutron stars. The effects of hadron-quark-quark phase tran-
sitions on the normal oscillation modes f and g, are studied under the Cowling relativistic
approximation. Our results show that, in the slow conversion regime, a second quark-quark
phase transition gives rise to a new g2 mode. We discuss the observational implications of
our results associated to the gravitational waves detection and the possibility of detecting
hints of sequential phase transitions and the associated g2 mode.
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1 Introduction

Neutron stars (NSs) are one of the possible compact remnants that can be produced as a
result of the gravitational collapse of a massive super-giant star. The observations made over
the electromagnetic spectrum suggest that NSs are objects with masses between 1–2 M� and
radius between 10–14 km [1, 2].

Inside NSs, matter is subject to extreme conditions. Central densities are several times
higher than nuclear saturation density nc & nnuc = 2.3 × 1014 g/cm3, the typical density of
the atomic nucleus [3]. The equation of state (EoS) (i.e. the relation between the pressure,
P , and energy density, ε, of the fluid) is essential to obtain different mass-radius (M -R)
diagrams with relevant features, such as the maximum mass. But the EoS for dense matter
inside NSs has yet to be found. For this reason, the development of different effective models
capable of describing the matter inside NSs is an active area of investigation in theoretical
astrophysics. The theoretical search for the EoS along with astronomical observations will
help us unravel the mysterious nature and behavior of dense matter.

Since the properties of matter at nuclear scale are governed by the strong interaction,
Quantum Chromodynamics (QCD) is needed for the description of dense matter in NSs. At
high densities (∼ 2nnuc), QCD predicts a phase transition from the baryonic matter to a state
on which the hadrons melt in their constituent particles, the quarks. In this exotic phase, a
plasma of free quarks and gluons is formed (see, for example, ref. [4] and references therein).
In this context, an alternative model to NSs has been proposed: the hybrid star (HS) model,
compact stars with an inner core of quark matter surrounded by hadronic matter.

Although most of the models of HSs usually consider only one phase transition, from
hadronic matter to deconfined quark matter [4–9], recently an EoS in which two sequential
phase transitions occur has been proposed [10, 11]. The authors of refs. [10, 11] consider a
first phase transition from hadronic matter to deconfined quark matter or to the two-flavor
color-superconducting (2SC) phase, in which quarks up and down pair. Then, a second phase
transition took place between this phase and the color-flavor-locked (CFL) color supercon-
ducting phase in which three flavors of quarks, up, down and strange, form pairs [12]. To
model such scenario, the authors use a generalization of the constant speed of sound (CSS)
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parametrization for quark matter (see, for example, refs. [6, 13]). One of their main conclu-
sions is that not only twin configurations (i.e. stable stellar configurations with a given mass
but different radius, for more details see section 3.1) can be obtained, but also triplets.

The discovery of ∼ 2M� pulsars put strong constraints on the EoS above nuclear
saturation density and help discard theoretical models unable to reproduce these observa-
tions [14–16]. However, several EoS are still compatible with such constraints [17]. These
observational results further highlights the need of accurate measurements not only of masses
but radii of these objects. Considering that the determination of the radii of NSs is not simple
(see ref. [18] and references therein), the search for other alternative quantities that provide
us information about the physics of matter inside of these objects becomes essential.

Nowadays, the detection of gravitational waves (GW) emitted by NSs is a turning
point in the study of NSs physics, giving rise to the multi-messenger astronomy with GW
era [4, 19, 20]. In the last years, the first direct detection of GW coming from the merger
of NSs, GW170817, [21] and its electromagnetic counterpart [22] help to restrict the EoS of
dense matter putting constraints on the radius of a 1.4M� NS [23, 24]. Moreover, combining
this information with other astronomical observations, recently it has been suggested that
quark matter should be present in the inner cores of very massive NSs [25]. Although a
second detection of GW from the merger of NSs, GW190425, was observed, this time no
electromagnetic counterpart (from which the lower limit for dimensionless tidal deformability
is derived) has yet been detected [26]. For this reason, this event does not provide further
restrictions to the EoS. Furthermore, new estimates of NSs radii from the NICER experiment,
placed at the International Space Station, also help to constraint the EoS. This experiment
has estimated the mass and the radius of PSR J0030+0451 with high precision [27, 28].

Apart from the merger of compact objects, another mechanism of GW emission are
the non-radial pulsations of NSs (see, for example, ref. [29] and references therein). In this
context, as the source of GW are the oscillations of the matter, the properties and charac-
teristics of the emission modes are intimately related with the EoS that describes the matter
inside NSs [20]. Thus, NSs asteroseismology would help us to understand their composition.
The main idea of this area of investigation is to parametrize the oscillation frequency, ω, and
the damping time, τ , of the oscillation modes as a function of NS macroscopic quantities
(for example, mass or radio) in order to obtain an universal parametrization, in other words,
independent of the EoS. This study field began more than two decades ago with the seminal
paper of Andersson and Kokkotas, ref. [30]. It was first applied to get information from
the analysis of the f mode, because it is believed to be the mode most easy to excite in
cataclysmic events such as the formation of a proto-NS after a supernova event. Today, the
importance of the NS asteroseismology lies in determining the dense matter EoS through the
estimation of the mass and radius of NSs from GW detections.

The aim of this work is to investigate the effect of sequential phase transitions in the cores
of isolated and non-rotating HSs over their non-radial oscillation modes. With this purpose,
we will model hybrid EoSs with two sequential phase transitions. For these calculations,
we will use an automatized code written in Bash, which includes two Fortran codes, one
to calculate the hybrid EoS and the other one to solve the TOV equations of relativistic
hydrostatic equilibrium. In this way, we will consider the results presented in ref. [31],
where the authors study the dynamical stability of HSs taking into account the role of phase
conversions in the vicinity of a sharp interface, considering two limiting cases: slow and
rapid conversions. This assumption allows us not only to study different families of stable
configurations but also to generalize the analysis about the possible existence (or not) of twin

– 2 –



J
C
A
P
0
2
(
2
0
2
1
)
0
0
9

or triplet stable branches. Once the stable families in hydrostatic equilibrium are obtained,
the f and g oscillation modes will be studied within the relativistic Cowling approximation,
using an extended version of the Fortran CFK code [5].

From here on, we will use a superscript i (i = 1, 2) to denote the sequential phase
transitions, joint conditions and their physical quantities at the respective interfaces.

The paper is organized as follows. In section 2, we present the EoSs that we use to
model the hadronic matter in the outer core of HSs. Then, we describe global aspects
of quark matter that might be present in the inner core and the simple model used to
describe the sequential hadron-quark-quark phase transition. In section 3, we present the
relativistic equations of hydrostatic equilibrium together with the one that characterizes the
tidal deformability of compact objects. We also describe the non-radial oscillations and
the relativistic Cowling approximation used to calculate the oscillation eigenfrequencies. In
section 4, we show the results obtained not only from solving TOV equation, in which we
calculate the mass, radius and tidal deformability, but also from calculating the oscillations
modes. Finally, in section 5, we present a summary and discussion of this work.

2 Hybrid equation of state

General properties of matter in the inner core of NSs are ruled by strong interactions. Such
properties can be analyzed via the so-called QCD phase diagram in the region of low tem-
peratures and intermediate and/or high densities (see figure 1). The QCD phase diagram
is not well established, but both theoretical studies and lattice QCD simulations suggest
some common general accepted characteristics [32, 33]. For example, at low temperature
and high chemical potential, hadrons composed of quarks are thought to dissolve and a
hadron-quark first order phase transition occurs. The quark phase could contain free quarks
or some non-CFL color superconducting phase, such as 2SC. At even larger values of the
chemical potential, another phase transition is expected to occur and quark matter would
be in the CFL phase [12]. Due to the inherent mathematical difficulties on the QCD treat-
ment, several phenomenological and effective models have been proposed for the description
of dense matter: MIT Bag [34], Nambu Jona-Lasino, both local and non-local extension (see,
for example, refs. [35–37]), Field Correlator Method (see, for example, refs. [38–40]). These
models reproduce some fundamental properties of QCD and are used for the description of
quark matter in the hybrid EoS.

Figure 1 shows that the area corresponding to NSs may comprise different phases. There
are two different more accepted ways in which the hadron-quark phase transition can occur
inside HSs. The nature of such phase transition mainly depends on the value of the hadron-
quark surface tension, σHQ. Due to the uncertainties related to the value of this quantity and
the wide range of theoretical results obtained in the literature, refs. [41–43], we assume that
σHQ is large enough for a sharp phase transition to be favored. Therefore, we use the Maxwell
construction to model the hadron-quark-quark phase transitions (see ref. [4] and references
therein). Besides taking into account results presented in ref. [31], we consider two limiting
scenarios for these sharp phase transitions. These scenarios are characterized through the
nucleation time of the phase transition: if the nucleation time is smaller than the oscillation
period of the interface under radial perturbations, then we have the slow conversion scenario,
otherwise we have the rapid conversion scenario. Since the nucleation times, both for the
hadron-quark phase transition and for the quark-quark phase transition considered in our
work, are still unknown, we consider both possibilities. As we detail in the next section, this
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Figure 1. Schematic QCD phase diagram. The temperature inside of the HS is considered to be
T = 0. Therefore, the region of HSs lies essentially over the chemical potential axis. As the density
increases, matter may change its thermodynamic state going through one or more phase transitions.

feature of the phase transitions strongly affects both the dynamical stability of the stellar
configurations and the non-radial oscillation modes.

The crust region of HSs is constructed by combining the standard Baym-Pethick Suther-
land (BPS) and Baym-Bethe-Pethick (BBP) EoSs [44, 45]. BPS EoS is determined by exper-
imental masses of neutron rich nuclei and it is used for the outer crust, from energy densities
∼ 104 g/cm3 up to the neutron drip energy density ∼ 4× 1011 g/cm3. BBP EoS, a simplified
compressible liquid drop model without curvature corrections, is used for the inner crust,
extending up to energy densities of ∼ 0.8× 1014 g/cm3. It is worth to mention that despite
the crust has almost no effect on the total gravitational mass, nor on the computation of the
oscillations modes, it can lead to differences in the NSs radius, affecting the tidal deforma-
bility (see, for example, [46] and references therein). However, in this work, we will not focus
on the crust effects, but on the distinctive characteristics on the frequency spectrum of the
oscillation modes that could indicate the presence of an abrupt phase transition in the star.

To describe the hadronic matter for densities smaller or of the order of the nuclear
saturation density, we use the Relativistic Mean Field (RMF) EoSs with the parametrizations
DD2, GM1L and SW4L [47–49]. The Lagrangian of these models are given by

LDD2 =
∑
B

ψ̄B
{
γµ[i∂µ − gωBωµ − gρBτ · ρµ]− [mB − gσBσ]

}
ψB

+
1

2
(∂µσ∂

µσ −m2
σσ

2)− 1

4
ωµνω

µν +
1

2
m2
ωωµω

µ

+
1

2
m2
ρρ µ · ρ µ −

1

4
ρ µν · ρ µν , (2.1)

LGM1L = LDD2 −
1

3
b̃σmN (gσNσ)3 − 1

4
c̃σ(gσNσ)4 , (2.2)

LSW4L = LGM1L +
∑
B

ψ̄B(gσ∗Bσ
∗ − gφBφµ)ψB + 1

2

(
∂µσ

∗∂µσ∗ −m2
σ∗σ∗2

)
−1

4φ
µνφµν + 1

2m
2
φφµφ

µ , (2.3)
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where the sum over B implies to sum over the whole baryon octet and the four delta reso-
nances, while the meson fields {σ, ω,ρ, σ∗, φ} are replaced by their mean field values in the
RMF approach. The main difference between GM1L and DD2 is that in the former, only
the coupling constants associated with ρ meson, gρB, are density-dependent, while in the
DD2 case all couplings constants gωB, gρB, gσB, depend on density, and the σ meson self-
interactions are not needed. In the SW4L case, we consider the inclusion of strange mesons,
the scalar σ∗, and the vectorial φ, and again only the coupling constants associated to the
meson ρ depend on density. For DD2 and GM1L parametrizations, the explicit coupling
values, as well as the adjusted physical quantities related, can be found in ref. [47] while
the corresponding quantities for the SW4L parametrization are those of the ref. [49]. It is
worth clarifying that hadronic EoSs GM1L and SW4L used in this work satisfy the cur-
rent observational restrictions for NSs related to mass and radii and have already been used
in different previous works [40, 50–52]. Despite the fact that not all the HSs constructed
with DD2 parametrization reproduce constraints from GW170817, we will see that a sharp
hadron-quark phase transition occurring at low pressure might help to solve this situation
(for more details see section 4).

To describe quark matter, we use a generalization of the CSS parametrization [6, 13].
In this model, the speed of sound inside the HS inner core is normalized by the speed of light
and it is assumed constant in each phase, so the EoS is linear. This generalization describes
two sequential sharp phase transitions in terms of six parameters [10].

The quark EoS used in this model has the following behavior:

P (ε) =


P1 , ε1 < ε < ε1 + ∆ε1
P1 + s1[ε− (ε1 + ∆ε1)] , ε1 + ∆ε1 < ε < ε2
P2 , ε2 < ε < ε2 + ∆ε2
P2 + s2[ε− (ε2 + ∆ε2)] , ε < ε2 + ∆ε2

(2.4)

where P1 is the transition pressure between the hadronic and the first phase of quark matter,
P2 is the transition pressure between the two different states of the quark matter (non-
CFL/2SC and CFL), ∆ε1 is the jump in the energy density for the first phase transition, ∆ε2
is the jump in the energy density for the second phase transition, s1 and s2 are the square
of the speed of sound corresponding to the two different quark phases. For pressures lower
than P1, we use one of the three hadronic models previously mentioned. In the figure 2 we
show a typical hybrid EoS obtained using this parametrization.

Although in this work we use a piecewise EoS that depends on the combinations of the
parameters involved, it is worth to mention the role of the strange quark mass, ms, is crucial
for the appearance of a quark-quark phase transition inside a HS if a non-parametric quark
EoS is considered. The description of color superconducting phases and the possibility of a
phase transition between them, becomes a bit more complex if the quark phase is described
by such EoS.

If we assume that very dense matter in the inner core of HSs is made up of weakly
interacting quarks, even though such interaction is arbitrarily weak, from an energetic point
of view it is more favorable for quarks to form pairs (diquarks) than to be in a quark-gluon
plasma. This is due to the Cooper instability, in analogy to Bardeen-Cooper-Schieffer’s
(BCS) theory of ordinary superconductivity [53]. Cooper pairs are bosons and occupy the
same lower energy quantum state at zero temperature (Bose condensates). The difference
with electrons in ordinary superconductivity is that quarks come in three flavors and three
colors in color superconductivity. As a consequence of diquarks formation, the SU(3)c color
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Figure 2. Typical scheme of a hybrid EoS with two abrupt phase transitions. Each color refers to
different EoS phases separated by phase transitions, with successive jumps in the energy density ∆ε1
and ∆ε2. The six parameters of the generalized CSS sequential transition model are denoted by P1,
P2, s1, s2, ∆ε1, ∆ε2. Figure adapted from ref. [10].

symmetry is broken. As a result of this breakdown, matter inside a HS with diquarks should
be not only electrically neutral but should not carry any color. This is achieved by minimizing
the quark matter Grand canonical potential with respect the chemical potentials associated
with the color charges [54].

The most common patterns of BCS color superconductivity are the 2SC and CFL phases.
Figure 1 shows the 2SC as the non-CFL phase, in which green and red up and down quarks
pair, while the blue color remains unpaired. All flavors and colors form pairs in the CFL
phase. The quarks forming diquarks in 2SC and CFL phases have the same Fermi momentum
in magnitude, but with opposite sign. Thus, diquarks have zero net Fermi momentum. This
condition is stressed if we consider ms 6= 0 [12]. As the density increases in stellar matter, the
mass of the strange quark, together with the condition of charge neutrality and β-equilibrium,
produces a mismatch in the Fermi momentum of the pairing quarks. In the 2SC phase only
quarks u and d form diquarks (considering mu ∼ md). If the mismatch in the Fermi mo-
mentum increases, the system may experience a phase transition to a more symmetric state,
the CFL phase, modeled with mu = md = ms = 0 and the same superconducting gap for all
pairings in its simplest version. The quark-quark transition will depend on the competition
between ms and the superconducting gap of each phase, and both are density dependent
quantities in more realistic and non-parametric models. A full treatment of how the mass
ms and superconducting gaps vary between different phases could be found in ref. [55].

3 Hybrid star structure and oscillations

In this section, we will review some fundamental aspects associated to the theoretical study
of static spherical stellar configurations. Moreover, we will discuss some phenomenology
related to different families of compact objects and their general properties. We will focus
our attention on the concept of twin stellar configuration as the hypothetical third branch of
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stable stars studied in several recent papers [9, 56, 57]. Besides, we will present the Cowling
approximation that will allow us to study the HSs non-radial oscillations modes. In addition,
it is important to mention that throughout this work we use the geometrized unit system in
which the gravitational constant, G, and the speed of light in vacuum, c, are equal to unity.

3.1 Spherical stellar configurations and stability

NSs have a typical compactness of about β = M/R ∼ 0.15, thus it is required to work in the
framework of General Relativity to describe properly its structure. Besides, most NSs are,
with high level of precision, spherical objects [58, 59]. For these reasons, it is valid to work
in a spherically symmetric space-time characterized by the following line element,

ds2 = − exp (ν(r))dt2 +

(
1− 2m(r)

r

)−1
dr2 + r2(dθ2 + sin2 θdφ2) ,

where functions ν(r) and m(r) are obtained after solving Einstein field equations. Starting
from this line element, the equations to obtain the structure of these compact objects were
obtained by Tolman [60] and Oppenheimer and Volkoff [61]. They are commonly referred to
as the TOV equations, and are given by:

dP (r)

dr
= −ε(r)m(r)

r2

[
1 +

P (r)

ε(r)

] [
1 +

4πr3P (r)

m(r)

] [
1− 2m(r)

r

]−1
,

dm(r)

dr
= 4πr2ε(r) , (3.1)

dν(r)

dr
= −

(
2

P (r) + ε(r)

)
dP (r)

dr
,

where m(r) is the total mass enclosed at a radius r and P and ε are the pressure and the
energy density, respectively. To be able to solve this system of differential equations we need
not only to establish an EoS and to select a central energy density, εc, but also to set the
proper boundary conditions:

m(0) = 0 ,

P (R) = 0 ,

exp (ν(R)) = 1− 2M

R
,

where M is the total mass of the star and R its radius.
After solving equations (3.1), for a given set of central energy densities, we obtain the so-

called mass-radius (M -R) and mass-central energy density (M -εc) relationships for a given
EoS. In addition, both the pressure and energy density profiles can be obtained for each
star composing the family of stellar configurations. M -R and M -εc curves contain crucial
information that can be compared with astronomical observations of NSs mass and radius.
Through this process, we can validate or discard theoretical models of NSs’ EoSs [4].

Besides the mass and radius of the compact object, we can calculate the dimensionless
tidal deformability, Λ. This quantity contains information related to the (in)ability of an
external gravitational field to induce a mass-quadrupole momentum on a given compact
object. Restrictions on this quantity were provided based on the GW data from the pre-
merger stage of the BNS mergers. For quadrupolar perturbations, Λ is related to the Love

– 7 –



J
C
A
P
0
2
(
2
0
2
1
)
0
0
9

number, k2, that can be obtained by solving, together with the TOV equations (3.1), an
additional differential equation:

r
dζ(r)

dr
+ ζ(r)2 + ζ(r)

1 + 4πr2 [P (r) + ε(r)]

1− 2m(r)
r

−
6− 4πr2exp (λ(r))

[
5ε(r) + 9P (r) + ε(r)+P (r)

dP/dε

]
1− 2m(r)

r

−
(
r

dν(r)

dr

)2

= 0 , (3.2)

with boundary condition ζ(0) = 2. Moreover, for EoSs with sharp discontinuities at radii
r = rit, the additional junction condition

ζ(rit
+

)− ζ(rit
−

) =
4πrit

3
[
ε(rit

+
)− ε(rit

−
)
]

m(rit) + 4π(rit)
3P (rit)

, (3.3)

must be imposed [62]. After solving equation (3.2), we calculate the k2 Love number using
the following expression:

k2 =
8

5
β5(1− 2β)2[2 + 2β(ζ − 1)− ζ]×

[
2β[6− 3ζ + 3β(5ζ − 8)] (3.4)

+4β3[13− 11ζ + β(3ζ−2) + 2β2(ζ+1)] + 3(1−2β)2[2−ζ+2β(ζ−1)] ln(1−2β)
]−1

,

where ζ ≡ ζ(R). Then, the dimensionless tidal deformability is obtained using

Λ =
2

3
k2

(
R

M

)5

. (3.5)

It is worth to mention that the individual values of the dimensionless tidal deformabil-
ities for the BNS system of GW170817 have been constrained [23, 24]. These observations
became extremely useful to discard theoretical models of NSs’ EoSs.

Regarding the dynamical stability of the stellar configurations, in ref. [31] the authors
study the response of HSs to radial perturbations and find that, within the slow conversion
scenario, extended branches of stable stellar configurations might appear, even when the total
mass of each star is not an increasing function of the central energy density. In contrast,
for rapid conversions, the stability criterion is valid only for the ∂M/∂εc > 0 branches. The
details of this calculation, that implies considering the joint condition at the phase transition
interface, can be found in ref. [31].

At this point we have to mention the possibility of the existence of standard twin stars
and how it would change the traditional M -R relationship. By standard we mean a third
stable family of compact objects under the usual stability criterion, given by the assumption
of a rapid conversion. The theoretical possibility of this third stable family of compact
objects was proven by Gerlach in the late 1960s [63]. He found that the necessary condition
for this family to exist is a large discontinuity in the speed of sound. In this scenario, after
a branch of standard unstable stellar configurations, a new branch of stable stars appears.
Such theoretical feature is also present in several works related to NSs with a hadron-quark
phase transition in their cores [50, 64–67]. In contrast, under the slow conversion case, the
mentioned unstable branch could become stable and then, the usual main and twin branches
get connected by stable configurations giving rise to triplets. The occurrence of standard twin
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configurations is a clear indicator of the existence of a hadron-quark phase transition in the
core of compact objects. However, it would not necessarily be useful to determine the nature
of the phase transition since twins are present both in models where a sharp hadron-quark
phase transition occurs and in those where a mixed phase appears [68, 69]. Astrophysical
relevance of twin stellar configurations has gained attention since data from GW170817 (and
its electromagnetic counterpart) and from the NICER observation of PSR J0030+0451 began
to be in tension (see panel 3(a) for more details). Clearly, the detection of GW emitted by
isolated compact objects might be a key point to shed some light into understanding the
behavior of matter inside these extreme objects.

3.2 Non-radial oscillations

One possible source of GW are isolated NSs, which can be perturbed by many factors (oscil-
lations of a binary NS post-merger remnant, glitch/anti-glitch activity, mountains, magneto-
elastic oscillations in magnetars, etc. [29]) and, to restore balance, they began to oscillate.
Non-radial oscillation of non rotating stars emits GW as long as they have non zero quadrupo-
lar moments, i.e., the perturbation associated with l ≥ 2 is not null. The energy is expected to
be released, mostly, through excitation of a few of these quasi-normal modes and in general,
the strongest emission occurs for quadrupolar modes, corresponding to l = 2 [70]. Hence, we
will focus our attention on this case.

The non-radial oscillation modes, not only fluid modes but also space-time modes, are
known as Quasi-normal modes (QNMs) because they are energy-dissipation modes. The
eigenfrequency of these modes are complex, whose real and imaginary part are related to
the oscillation frequency and damping time, respectively. Therefore, such modes describe
perturbation fields decreasing in time.

The fluid modes (f , p, g, etc.) are related to perturbations in the fluid that excite
spacetime oscillations [71]. On the other hand, a different family of modes, like the w, or
space-time modes (w, wII, etc.) are oscillations of the metric that hardly excite the fluid
motion [72]. The most important fluid modes related to GW emission are the fundamental
modes (f), the pressure modes (p), and the gravity modes (g). The p modes have higher
frequencies than the g modes, and their families are separated by the f modes. Moreover,
there is only one f mode for each index l in the spherical harmonic, while there are infinite
p and g modes [71].

The presence of g modes in cold and non rotating stars, indicates that exist an abrupt
phase transition in the interior of the star, because these modes are completely inhibited if
the EoS is continuous [73]. Also, it is important to stress that the g modes associated with
discontinuities in the EoS only exist in the slow conversion scenario: g modes does not appear
if the conversion is rapid [74].

On the other hand, there are other effects that excite different families of g modes that
may differ from the ones produced by discontinuities in the EoS. In refs. [7, 75]; for example,
the authors analyzed the g modes generated by considering effects as superfluidity, rotation,
and also the existence of intense magnetic fields in the interior of NSs. Once presented our
results, we discuss this with more details in section 5.

3.2.1 Relativistic Cowling approximation

In order to study the non radial oscillation modes of HSs, we use the relativistic Cowling ap-
proximation [76]. Within this approximation, the perturbations of the background space-time
are neglected and only the fluid perturbations are considered. Nevertheless, the oscillation
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frequencies obtained using this method differ only by 20% from those obtained using the
General Relativity linearized equations (see refs. [5, 77, 78], and references therein). The
error related to the fundamental mode is reduced as the compactness of the NS increase, but
it is never larger than 20% [78]. On the other hand, if we focus on the error associated to
the g modes, the difference is less than 10% [74, 79]. Therefore, for the g modes, the results
obtained using the relativistic Cowling approximation are qualitatively and quantitatively
acceptable.

When the metric perturbations are negligible, the set of differential equation necessary
to study the oscillation modes is simplified considerably. In the relativistic Cowling approx-
imation only the fluid modes can be studied. Also, since there is no energy dissipation by
GW emission, the damping times of the QNMs can not be studied. Nevertheless, it is not
a shortcoming since we aim to focus on the normal stellar oscillations modes which can be
studied through this approximation without problems. Within this theoretical framework,
the equations needed to obtain the mode oscillation frequencies are:

dW (r)

dr
=

dε

dP

ω2 r2√
1− 2m(r)

r

e−ν(r)V (r) +
1

2

dν(r)

dr
W (r)

− l(l + 1)√
1− 2m(r)

r

V (r) , (3.6)

dV (r)

dr
=

dν(r)

dr
V (r)− 1√

r − 2m(r)
W (r) , (3.7)

where ω is the oscillation frequency and W (r) and V (r) are functions of r that characterize
the fluid perturbation [5, 80].

To solve this set of coupled differential equations (3.6) and (3.7), we need to impose
boundary conditions in two points inside the star. At the center (r ∼ 0), the behavior of the
solutions are of the form

W (r) ∼ rl+1 , V (r) ∼ −l−1rl , (3.8)

and at the stellar surface, the Lagrangian perturbation to the pressure has to be zero,

∆P (R) = 0 . (3.9)

After some algebra, condition (3.9) can be written as

ω2

[√
1− 2M

R

]− 3
2

V (R) +
1

R2
W (R) = 0 . (3.10)

The values of ω2 that satisfy the equation (3.10) are the eigenfrequencies we seek to ob-
tain [79, 81].

This method can be generalized to the case in which the EoS has one or more discontinu-
ities at r = rit. In this case, additional junction conditions at the surface of each discontinuity
have to be considered. These continuity conditions for W and ∆P can be written in terms
of the variables W and V in the following way:

W i
+ = W i

− , (3.11)

V i
+ =

eν

ω2rit
2

(
1− 2m

rit

)
×

(
εi− + P

εi+ + P
[ω2rit

2
e−ν

(
1− 2m

rit

)−1
V i
− + ν ′W i

−]− ν ′W i
+

)
, (3.12)
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where the subindex − (+) corresponds to quantities before (after) the phase transition. Note
that, in absence of discontinuities, the function V (r), becomes continuous and V+ = V−.

These calculations are performed using an extended version of the CFK code [5]. This
new version is able to obtain oscillation modes of stellar configurations with two sharp phase
transitions. Thus, given an initial frequency, ω2

0, the system of equations (3.6) and (3.7) is
solved using a Runge-Kutta-Fehlberg integrator. In the case of HSs with two phase tran-
sitions, we first integrate from the center of the star up to the first transition. Then, we
integrate again up to the second transition, using the continuity conditions given by equa-
tions (3.11) and (3.12) at the first transition, to obtain the corresponding initial conditions for
this region. Finally, we integrate up to the surface of star, using equations (3.11) and (3.12)
at the second transition to compute the initial conditions of this third region of integration.
Due to the stiff nature of the eigenfrequency equation root-finding problem, we use a Newton-
Raphson algorithm coupled with Ridders’ method to obtain a corrected frequency, and we
repeat the aforementioned procedure until equation (3.10) is fulfilled.

4 Results

To analyze the structure and stability of the NS models and the frequencies of their oscil-
lation modes, we construct a large amount of different hybrid EoSs. As it has been already
mentioned in section 2, for the crust we use the BPS-BBP model and for the hadronic phase
we used the DD2, GM1L and SW4L parametrizations of the RMF, with density dependent
coupling constants. For the sequential quark phases, the parameters have been chosen taking
into account two cases: stiff and soft. For the stiff case, we consider an extended range of
the parameter values used in ref. [10], s1 = 0.7 and s2 = 1.0. For the soft case, we take lower
values of the square speed of sound, s1 = 0.3 and s2 = 0.5, consistent with non-parametric
quark EoSs [37, 40, 50]. For the rest of the parameters, P1, P2, ∆ε1 and ∆ε2, we consider
the following range of values:

38 MeV/fm3 ≤ P1 ≤ 410 MeV/fm3 , 200 MeV/fm3 ≤ ∆ε1 ≤ 1000 MeV/fm3 ,

125 MeV/fm3 ≤ P2 ≤ 610 MeV/fm3 , 22 MeV/fm3 ≤ ∆ε2 ≤ 38 MeV/fm3 ,

generating about 3400 hybrid EoSs by combining the parameters in different ways. Then,
after solving the TOV equations for each EoS, we obtain the mass, M , and radius, R, of the
stellar models. Analyzing these results, we select a set of eight different representative EoSs
whose M -R curves have a star of maximum mass larger than 2.05M�, with twins or triplet
configurations, if exists, and with connected and disconnected stability branches. These
selected models are presented, described and labeled in table 1.

In figure 3 we show our TOV integration results for the representative hybrid EoSs of
table 1, where each color represents each EoS. Under the slow conversion scenario, in both
panels, the solid lines correspond to stable branches, while the dotted lines correspond to
unstable branches. For the rapid conversion case, the stable branches correspond, as usual,
to the regions where ∂M/∂εc > 0 and ∂M/∂R < 0. In panel 3(a), we show our results for the
relation M -R and the constraints from current observations. In panel 3(b), we also show the
relation M(εc), where it can be seen how the jumps in εc in each curve indicate the abrupt
sequential phase transitions. The stability vanishes for ∂M/∂εc < 0 when rapid conversions
are considered, but it is extended until the terminal mass — the last stable configuration of
the extended branch — if the slow conversion between phases scheme is assumed.
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Hyb. EoS Had. EoS
Quark EoS

P1

[
MeV
fm3

]
P2

[
MeV
fm3

]
∆ε1

[
MeV
fm3

]
∆ε2

[
MeV
fm3

]
s1 s2

1 DD2 38 150 220 22 0.7 1.0

2 DD2 50 150 220 38 0.7 1.0

3 DD2 125 150 220 38 0.7 1.0

4 DD2 250 400 200 30 0.3 0.3

5 GM1L 38 150 220 22 0.7 1.0

6 SW4L 350 380 220 30 0.7 1.0

7 SW4L 350 450 220 22 0.7 1.0

8 SW4L 410 570 220 38 0.7 1.0

Table 1. Details of the eight selected hybrid EoSs: number label, hadronic EoS and the six parameters
of the sequential CSS model for the quark phase.
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Figure 3. M -R relationship is presented for the selected EoSs, together with five observational con-
straints, panel (a). The colored regions correspond to the constraints imposed by the GW170817 event
and NICER observations. The horizontal bars correspond to the constraints imposed by J0740+6620,
J0348+0432 y J1614-2230. On the right, panel (b), the M(εc) relationship is presented for the same
EoSs. In both figures, the solid lines correspond to stable branches (if we consider slow conversion
between phases) while the dotted lines correspond to unstable branches. For rapid phase transitions
stable configurations are only those for which ∂M/∂εc > 0. Each color represent different hybrid EoS,
whose references are in table 1.

As it can be seen from panel 3(a), all the selected EoSs satisfy the constraints from
J0740+6620, J0348+0432 and J1614-2230. The restrictions imposed by GW170817 and
NICER for masses and radii are not satisfied by all the selected hybrid models. While all the
GM1L and SW4L hybrid EoSs satisfy these restrictions, only one DD2 hybrid EoS does it.
For this EoS, EoS 1, there is an early phase transition between the DD2 parametrization and
quark matter. The purely hadronic DD2 NSs and the DD2 HSs with a late phase transition
do not fulfill GW170817 constraints.
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Figure 4. In continuous lines, we present the energy density profile, ε(r), for stars with hadronic
EoS (red), one phase transition (yellow) and two phase transitions (light blue). With the same colors,
but using dashed and dotted lines, we present the pressure profiles, P (r), continuous in all cases.
Both quantities, energy density and pressure, are in the same scale. In this schematic figure, it can
be seen the radius at which the phase transition occurs for HSs with one and two phase transitions.

When we work considering that both phase transitions are rapid, a few standard twin
configurations appear for EoS 1, 3 and 5. In general, even having explored the parameter
space in a systematic and exhaustive way, our results show that within this CSS sequential
model, the existence of twins satisfying the latest observational restrictions of NSs is marginal
and the existence of triple stars, null. It also should be noted that, for both EoS 1 and 5, the
star configurations satisfying the observational constraints are in a disconnected hybrid stable
branch. This situation changes when slow phase transitions are considered and extended
stable branches appear. Within this theoretical scenario, high-mass slow twins (we use this
name to distinguish them from the standard twins) are a common feature (see, EoS 3, 4, 7
and 8 in figure 3). Moreover, it is important to note that slow triplets also appear. This
situation is particularly visible in EoS 3. One interesting case is the one of EoS 4, in which no
stable stellar configurations with two phase transitions are present if we consider the rapid
conversion scenario. This situation changes when phase transitions are assumed to be slow,
where an extended stable branch that reach the second phase transition appears.

Additionally, in figure 4, we show the energy density (continuous lines) and pressure
(dashed-dotted lines) internal profiles, as function of the stellar radius, for the three types of
stellar configurations that could result from considering the sequential hybrid EoS presented
in section 2. In this schematic figure, the specific details of each EoSs are not relevant since
we aim only to show the qualitative features of each EoS profile. We show, in red color, a
purely hadronic star, in yellow, a hybrid star with one phase transition and, in light blue,
a hybrid star with two phase transitions. For the hadronic star, both the pressure and the
energy density are continuous functions of the radius. The hybrid stellar configurations with
one (two) phase transition(s) show one (two) discontinuity(ies) in the energy density. In this
sense, the stellar models we present have, comparing these cases, similar radius but radically
different internal compositions. Also, in purely hadronic stars, not only the pressure but
also the energy density are lower than in HSs. As the compactness of the star increases, the
pressure and the energy density inside the star increase too.
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Figure 5. Dimensionless tidal deformabilities in the Λ1 − Λ1 plane for the EoSs of table 1. Each
axis corresponds to one of the two stars of the NS-binary system, considering the constraint imposed
by GW170817. The gray regions correspond to the 90% and 50% probability contour given by this
event. As the keys of the figure shows, the overlapped EoSs are presented with only one color. The
dash style of each curve indicates the number of phase transitions that are present inside each of the
two NS of the system: h stands for pure hadronic NS, q1 for HS with only one phase transition and
q2 for HS with two phase transitions.

In figure 5, we show the individual dimensionless tidal deformabilities for compact ob-
jects with masses in the range consistent with the (astrophysically more plausible) low-spin
case for GW170817 [22]. For this figure, we do not differentiate between the rapid and slow
scenarios in order to keep the figure simple an clear, since there are no qualitative differences
in the implications of both results. The sequential phase transition model that we are work-
ing with opens several possible scenarios in which not only NSs might have merged but also
situations in which a NS and a HS merged and cases in which the merging objects were two
HSs. The cases in which NSs merge are labeled with hh, those in which a HS merge are indi-
cated with qi where i = 1, 2 indicates how many phase transitions occur in the HS interior.
Finally, the cases in which two HSs merge are labeled with qiqj. We also present the 50%
and 90% confidence level curves of ref. [22]. The general effect of the appearance of quark
matter is to produce lower values of the dimensionless tidal deformability, these results are
in agreement with those obtained in ref. [11]. We see that the models with DD2 hybrid EoSs
are only able to reproduce these observations if one of the objects that merge in GW170817
is a HS and the transition pressure from hadronic matter to non-CFL quark matter is low as
in EoS 1 (see, table 1 for details). If one consider the other two hadronic parametrizations,
GM1L and SW4L, they are consistent with the available astronomical constraints both for
purely hadronic stars as for hybrid ones. Parametrization SW4L produces more compact
hadronic stars, for this reason they are in better agreement with GW data.

For the hybrid EoSs in table 1, the frequencies of the normal oscillation modes f and g
were calculated not only for stars with two phase transitions, but also for stars with one phase
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Figure 6. Frequencies of the f , g and g2 modes as a function of the mass of the stellar configuration
for hybrid EoSs 1, 2, 3 and 4. For f modes, we use red color for stellar configurations that are
stable only in the slow scenario, and black color for stellar configurations that are stable under both
scenarios. All the g and g2 modes are presented in red as they are absent if the sharp phase transition
is rapid. With dotted line we present the new g2 mode, with continuous line the g mode, and with
dash-dotted line the frequency of the f mode. Circles (triangles) over the lines are used to indicate
stars with one (two) sharp discontinuities in their cores. For details of the EoS, see table 1.

transition and without phase transition. In figures 6 and 7 we show the frequencies of the
oscillation modes, ω, as a function of the stellar configuration mass. To present the results
related to the oscillation f modes we use red color for stellar configurations that are stable
only in the slow scenario, and black color for stellar configurations that are stable under both
scenarios. All the g and g2 modes are presented in red as they are absent if the sharp phase
transition is rapid. Each panel corresponds to a different hybrid EoS according to the table 1.
The different line types are associated with the different oscillation modes: dash-dotted line
for the f mode, continuous line for the g mode and dotted line for the g2 mode, the new mode
associated with the abrupt quark-quark phase transition. The different symbols (triangles,
hollow dots) refer to stars with different composition: no symbol is used for purely hadronic
objects, circles and triangles are used to characterize the models of stars with one and two
phase transitions, respectively.

Specifically, in figure 6, we show different frequencies of the oscillation modes as a
function of the mass of the compact object. In this figure, we present the results obtained for
stellar configurations constructed using the DD2 parametrization. The behavior of EoS 1 and
2 — panel (a) and (b), respectively — is similar and these results are comparable (the only
difference between them is a short twin branch of stars with one discontinuity in the EoS 1).
In both cases, after the first phase transition there are a disconnected branch that become
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Figure 7. Same as figure 6 but for hybrid EoSs 5, 6, 7 and 8. For details of the EoSs, see table 1.

connected, and so twins configuration appear, when slow conversion is considered. For hybrid
EoS 3 — see panel (c) in figure 6, — it presents twin configurations and we can observe that
the frequency of both f and g modes show a degeneration as a function of the mass. For this
reason, a simultaneous detection of both the f and g, and (non-)detection of the g2 mode
would be needed in order to determine the internal structure of the pulsating compact object.
These differences make the frequency of the f mode in pure hadronic stars different from
the frequency of the f mode in HSs with one phase transition. Results for hybrid EoS 4 are
shown in panel (d). In the rapid scenario, the appearance of quark matter quickly destabilizes
stellar configurations and hybrid stellar configurations are only marginal. However, in the
slow scenario, an extended stable HS branch of twin configurations appears up to the terminal
mass Similar results, for non-parametric hybrid EoSs, were presented in ref. [5].

Analogously, in figure 7, we present the frequencies of the oscillation modes for HSs
constructed with GM1L — EoS 5 shown in panel (a) — and SW4L — EoS 6, 7 and 8
presented in panels (b), (c) and (d) respectively — parametrizations. Results obtained using
EoS 5 are similar to those shown in figure 6 for hybrid EoSs constructed using DD2. In panel
(b), we can see that the branch of stable stars with double phase transition becomes larger
when the slow scenario is considered. Panels (c) and (d) show similar results for hybrid EoSs,
in which, in the rapid scenario, the onset of quark matter in the inner core destabilizes the
star and a very short branch of connected stable configurations exists. In the slow scenario,
stable stars with double phase transition appear in EoS 7 and 8. In the last one, also the
branch of stars with one phase transition becomes larger. Regarding these two panels, it
is important to remark that the difference between EoS 7 and EoS 8 is the length of the
branch of stable stars with one phase transition. For EoS 8, such branch is stable only at
the beginning and then it becomes unstable.
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Figure 8. In this figure we show the Log(ω) as function of the ∆εtrans/εtrans for the g and g2 modes.
The gray dots and the black curve correspond to the results obtained in ref. [5]. In colors, we added
the new results obtained in this work, the circles correspond to the g mode of stars with one phase
transition and the triangles correspond to the g and the new g2 modes of stars with two phase
transition, and the dash-dotted line in red is the new fit which includes all the data. Data grouped
in the bottom left corner corresponds to frequencies of g2 modes.

In general, stars without phase transition have lower mass. For these models, we have
only calculated the fundamental oscillation mode, f . For central pressures above P1, stellar
configurations with one phase transition appear. In addition to the fundamental mode, for
these configurations we have calculated the g mode associated to the discontinuity in the
energy density inside the stars. We must emphasize that, if we assume rapid conversion
between phases, EoS 4, 7 and 8 do not produce stable stars with two phase transitions. For
stellar configurations with central pressures higher than P2, we obtained stars with double
phase transition. For these objects we found, for the first time, a second oscillation mode
associated with the second discontinuity in the energy density profile inside the star, we
have called this g2 mode. It is important to remark that each mode appears in a particular
frequency range. The frequencies calculated for f , g and g2 modes are in a range between 2
to 3 kHz, 0.8 to 1.5 kHz and 0.2 to 0.5 kHz, respectively. However, despite the fact that each
mode lies in a definite range, for the three modes there are slight but noticeable differences
between different EoSs.

On the other hand, a relation between the frequency of the g mode and the quotient
between the jump in the energy density, ∆ε, and the energy density at phase transition,
εtrans, has been presented in ref. [5]. The results obtained in this work for the g and for the
g2 mode were added to the frequencies of ref. [5]. A new fit for all the data is shown with
a red line in figure 8. In the same figure, the original fit is shown in black and results from
ref. [5] are shown with gray color. Modes corresponding to the EoSs used in this work are
presented using the same colors of figure 3. The circles correspond to modes of HSs with one
phase transition and the triangles correspond to modes of HSs with two phase transition.
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Detector Distance
Energy [erg]

f -mode g-mode g2-mode

Advanced LIGO-Virgo 10 kpc 2× 1047 7× 1046 1046

Einstein 10 kpc 2× 1045 7× 1044 1044

Advanced LIGO-Virgo 15 Mpc 6× 1053 9× 1052 2× 1052

Einstein 15 Mpc 6× 1051 9× 1050 2× 1050

Table 2. Estimated values of the minimum amount of energy that needs to be channeled in a
particular mode in order to be detected by a particular instrument. Two astrophysical relevant
distance scenarios are considered: a Galactic NS (10kpc) and an object at a distance comparable to
the Virgo cluster (15Mpc).

Following ref. [5], we fit the discontinuity modes (both g and g2) using the simple
functional form given by,

ω = aLog

(
∆ε

εtrans

)
+ b , (4.1)

where the values of the parameters a and b turn to be

a = 0.512± 0.022 (4.5%) , (4.2)

b = 0.255± 0.017 (8.1%). (4.3)

As it can be seen from figure 8, including the new data, represented with colored dots,
there is still a strong correlation between the frequency of the discontinuity modes and CSS
parameter ∆ε/εtrans. Considering the value of the parameter a resulting after the fit, we have
obtained a generalization of the Newtonian case where the value of a is strictly 0.5, as the
square of the Brunt Väislälä frequency is proportional to ∆ε/εtrans [82].

Furthermore, we estimate the detectability of the oscillation modes regarding their
energetics. In general, for an object at a distance, D, the minimum energy that has to be
channeled into a particular oscillation mode of frequency, f , and quality factor, Q = πfτ ,
with a given signal-to-noise ratio, S/N , in order to be detectable by a particular instrument
with a noise power spectral density, Sn, can be estimated using this simple formula [83]:

EGW = 6.25× 1090
(
S

N

)2 1 + 4Q2

4Q2

(
D

10 kpc

)2( f

1 kHz

)2( Sn

1 Hz−1

)2

erg. (4.4)

For the Advanced LIGO-Virgo detector,
√
Sn ∼ 10−23 Hz−1/2 in the frequency band ∼ 0.5–

2 kHz. Einstein telescope is expected to be an order of magnitude more sensitive [84].

In table 2, we present minimum values of energy that have to be channeled into the f ,
g and g2 modes in order to be detectable by these two instruments, if the emitting compact
object were at a distance of 10 kpc or 15 Mpc, and considering a detection threshold of
S/N = 8. To obtain these results, we have used characteristic damping times of f -modes
and the fact that, for the gravity modes, Q � 1. Moreover, we have used characteristic
values for the f , g and g2 modes of 2, 1 and 0.5 kHz, respectively.

Considering the astrophysical context, a typical core-collapse supernova event releases
∼ 1053 erg. In comparison, estimations presented in table 2 show that detection of GW emit-
ted by Galactic NSs are difficult but feasible even with the Advanced LIGO-Virgo detector,
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particularly for g-modes. Once data from the Einstein telescope become available, this sit-
uation would be much more encouraging. The ∼ 1045 erg detection-threshold for f -modes
might allow us to observe GW produced as a consequence of the non-radial perturbations of
giant flares in magnetars and, even, of glitch activity in local pulsars.

5 Summary and discussion

In this work, we have studied the stellar structure and the non-radial oscillations of HSs,
considering the occurrence of a second sharp phase transition in their cores. We have con-
sidered the scenarios in which conversion between the different phases are rapid and slow,
where extended branches of stable stellar configurations exist. We have analyzed the effect
of the second transition on the frequencies of the normal oscillation modes f and g, within
the relativistic Cowling approximation.

To model the two sequential phase transitions we have used the Maxwell construction for
the hybrid EoSs. To describe the nuclear matter, we have chosen three modern parametriza-
tions of the RMF theory: GM1L, SW4L and DD2. Stellar configurations constructed with
GM1L and SW4L are compatible with recent astrophysical constraints from event GW170817
and NICER observations of PSR J0030+0451. On the other hand, stars obtained using DD2
EoSs are not compatible with the restrictions imposed by GW170817. However, our results
show that if a hadron-quark phase transition occurs at low pressure, this situation can be
overcome. The sequential quark phase transition EoSs have been constructed using an ex-
tended generalization of the CSS parametrization. The CSS EoS model has the capability of
describing, both qualitative and quantitative, aspects of non-parametric and effective quark
matter models of QCD. Moreover, within this approach, observational constraints analysis
can be expressed in a model-independent fashion. We have explored, systematically, the
six-parameter space of this model. In this way, we have constructed more than 3000 different
hybrid EoSs combining different models, exploring differences and similarities among them.
The EoSs parameters have been chosen following two cases, stiff and soft, in which the main
difference between them is the value of the squared speed of sound. For the stiff case, we
use values of the squared speed of sound compatible with the ref. [10]. In the soft case we
consider the values of the squared speed of sound compatible with non-parametric quark EoS.

For each hybrid EoS, we have solved TOV equations, from which we obtain stellar
parameters such as the mass, M , the radius, R and the dimensionless tidal deformability, Λ.
Of all the HSs families obtained, we have selected a set of eight representative hybrid EoSs
qualitatively different, guaranteeing that the ∼ 2M� constraint is satisfied. An interesting
fact is that, in the rapid conversion scenario, despite having analyzed ∼ 3400 different hybrid
EoSs and having obtained long branches of both connected and disconnected hybrid stellar
configurations, our models only predict the appearance of twin stars in a very restrictive
range of masses. This situation might occur for low mass objects as in EoSs 1 and 5 or, as in
EoS 3, for objects with masses ∼ 2M�. Another interesting remark is that we have not found
triplet configurations like those found in refs. [10, 11]. Due to the lack of hybrid EoSs, that
lead to the appearance of triplets, and the extremely short mass-range of the triplet family
found in refs. [10, 11], we argue that this is a relatively marginal feature. In any case, their
appearance is a product of a fine-tuned selection of EoS parameters. This situation changes
when we consider slow phase transitions. In this theoretical scenario, high-mass slow twins
are a common feature. Moreover, we have found that slow triplets are also possible.
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The conclusions arising from the results of the dimensionless tidal deformability, Λ, are
similar to those obtained from mass radius relation. The GM1L and SW4L parametrizations
satisfy the constraints coming from the GW170817 event, but only the low pressure transition
case for HSs constructed with DD2 parametrization does it. Regarding this observable, the
major differences between the slow and rapid conversion scenarios occur for HSs with masses
above ∼ 2M�. For this reason, the data from GW170817 is not useful to decide which of
these two theoretical possibilities could be favored if a phase transition occurs in the inner
cores of HSs.

In summary, we have constructed HSs with sequential phase transitions satisfying recent
restrictions from neutron stars observations, even considering hadronic EoSs that, otherwise,
should be discarded. It is important to remark that, we have selected a single soft case
as representative of all the other soft cases, since they are very similar and do not have
differentiating characteristics. The situation is different for the stiff cases. However, most of
the quark EoSs used in the literature to describe the matter at high densities in HSs (non-
parametric quark EoS) have a squared speed of sound of the order of ∼ 0.3, i.e. they are soft
EoSs. This causes that the appearance of twins and triplets is even more unlikely, since the
favored scenario for the formation of such configurations is a stiff high density EoS (like the
parametric EoSs used in this work). It is known that by including repulsive interactions in
the quark models, the EoS becomes stiffen. In this sense, the parametric quark EoSs with
large speed of sound could be associated to more realistic quark EoSs in which higher order
repulsive interactions are included [85].

In addition, for the selected EoSs, we have calculated the frequencies for the non-radial
f and g modes, the latter associated with sharp and slow phase transitions inside HSs. To this
aim, we have extended the Cowling approximation to consider sequential phase transitions.
We found f modes to lie in the range 2–3 kHz and g modes in the 0.8–1.5 kHz range. However,
it is important to point out that the differences for the f modes when using the Cowling
approximation could be up to 20% when compared to the General Relativity linearized
equations. For this reason, our conclusions regarding the f modes are only qualitative.
Nevertheless, as for the g modes the differences are less than the 10%, we could assert that
the detection of GW associated with an oscillation mode with a frequency in the range of
1–1.5 kHz would have important astrophysics implications: it might be not only a proof of
the existence of quark matter inside a compact star, but also it might indicate that the
hadron-quark transition phase is abrupt, imposing constraints to the surface tension value
at the hadron-quark interface.

Additionally, the occurrence of a second abrupt phase transition in HSs, leads to the
appearance of a new g mode, called g2 mode, which has not been calculated before. This
mode typically appears with lower frequencies than the g modes, in the range 0.2–0.5 kHz.
Furthermore, the relation shown in figure 8 strengthen the idea presented in ref. [5] that the
frequencies of the g-modes, both g and the new g2, are universally related to the value of
∆ε/εtrans. For this reason a detection of such modes might be the key to properly understand
the nature of the hadron-quark phase transition and restrict some of its physical parameters
associated with NSs internal composition.

The g2-modes presented in this work lies in a frequency range that might be resonantly
excited by tidal forces during the early stages of a NS-NS (BH-NS) inspiral, when orbital pe-
riod might (momentarily) become resonant with such modes (see, for example, refs. [86, 87]).
During this time, energy is drawn from the orbital motion to excite such modes and as a
consequence the inspiral speeds up. This effect might produce an observable phase shift in
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the gravitational wave forms that could, in principle, allow us to shed some light into the
nature of the innermost regions of these extremely compact objects.

It is important to point out that in the g2 mode range of frequencies, there are different
modes associated to other effects such as superfluidity, rotation and intense magnetic field
inside NSs [7, 75]. Therefore, as GW information would not be sufficient to distinguish
between certain modes, we need, also, information from electromagnetic observations to
discard modes in that frequency range produced by physical effects other than a second sharp
phase transition. In this way, we could properly identify the different oscillation modes whose
frequencies are similar and characterize the emitting object. This reinforces the fact that
multimessenger astronomy is the most suitable approach to better understand the internal
composition of such compact objects.

It would be extremely interesting to analyze the existence of a universal relationship
like the one presented in figure 8 beyond the relativistic Cowling approximation. Studying
g mode oscillations within the linearized theory of relativity would allow to investigate not
only the oscillation frequency but also the damping time. If this were possible, it would have
a great impact as a new branch of study would open: the g mode asteroseismology.

To conclude, all this rich complexity in the QNM spectrum might be tested, as we
have estimated in table 2, when observational data from third generation GW-observatories
become available. During this era, the study of such modes might be useful to shed some
light into understanding the nature of matter in the inner cores of such compact objects.
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[48] S. Typel, G. Röpke, T. Klähn, D. Blaschke and H.H. Wolter, Composition and thermodynamics
of nuclear matter with light clusters, Phys. Rev. C 81 (2010) 015803 [arXiv:0908.2344]
[INSPIRE].

[49] W.M. Spinella and F. Weber, Hyperonic Neutron Star Matter in Light of GW170817,
Astron. Nachr. 340 (2019) 145 [arXiv:1812.03600] [INSPIRE].

[50] I.F. Ranea-Sandoval, M.G. Orsaria, S. Han, F. Weber and W.M. Spinella, Color
superconductivity in compact stellar hybrid configurations, Phys. Rev. C 96 (2017) 065807
[INSPIRE].

[51] G. Malfatti, M.G. Orsaria, G.A. Contrera, F. Weber and I.F. Ranea-Sandoval, Hot quark
matter and (proto-) neutron stars, Phys. Rev. C 100 (2019) 015803 [arXiv:1907.06597]
[INSPIRE].

[52] G. Malfatti, M.G. Orsaria, I.F. Ranea-Sandoval, G.A. Contrera and F. Weber, Delta baryons
and diquark formation in the cores of neutron stars, Phys. Rev. D 102 (2020) 063008
[arXiv:2008.06459] [INSPIRE].

[53] J. Bardeen, L.N. Cooper and J.R. Schrieffer, Theory of superconductivity, Phys. Rev. 108
(1957) 1175 [INSPIRE].

[54] I.A. Shovkovy, Two lectures on color superconductivity, Found. Phys. 35 (2005) 1309
[nucl-th/0410091] [INSPIRE].

[55] M. Buballa, NJL model analysis of quark matter at large density, Phys. Rept. 407 (2005) 205
[hep-ph/0402234] [INSPIRE].

[56] D.E. Alvarez-Castillo and D.B. Blaschke, High-mass twin stars with a multipolytrope equation
of state, Phys. Rev. C 96 (2017) 045809 [arXiv:1703.02681] [INSPIRE].

[57] G. Montana, L. Tolos, M. Hanauske and L. Rezzolla, Constraining twin stars with GW170817,
Phys. Rev. D 99 (2019) 103009 [arXiv:1811.10929] [INSPIRE].

[58] S. Bhattacharyya, The permanent ellipticity of the neutron star in PSR J1023+0038, Mon.
Not. Roy. Astron. Soc. 498 (2020) 728 [arXiv:2008.01716] [INSPIRE].

[59] LIGO Scientific, Virgo collaboration, Gravitational-wave Constraints on the Equatorial
Ellipticity of Millisecond Pulsars, Astrophys. J. Lett. 902 (2020) L21 [arXiv:2007.14251]
[INSPIRE].

[60] R.C. Tolman, Static solutions of Einstein’s field equations for spheres of fluid, Phys. Rev. 55
(1939) 364 [INSPIRE].

[61] J.R. Oppenheimer and G.M. Volkoff, On Massive neutron cores, Phys. Rev. 55 (1939) 374
[INSPIRE].
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