805 research outputs found
Velocity map imaging of the dynamics of the CH3 + HCl -> CH4 + Cl reaction using a dual molecular beam method
International audienceThe reactions CH3 + HCl → CH4 + Cl(<sup>2</sup>P<sub>3/2</sub>) and CD<sub>3</sub> + HCl → CD<sub>3</sub>H + Cl(<sup>2</sup>P<sub>3/2</sub>) have been studied by photo-initiation (by CH<sub>3</sub>I or CD<sub>3</sub>I photolysis at 266 nm) in a dual molecular beam apparatus. Product Cl(<sup>2</sup>P</sub>3/2</sub>) atoms were detected using resonance enhanced multi-photon ionisation and velocity map imaging, revealing product translational energy and angular scattering distributions in the centre-of-mass frame. Image analysis is complicated by the bimodal speed distribution of CH<sub>3</sub> (and CD<sub>3</sub>) radicals formed in coincidence with I(<sup>2</sup>P<sub>3/2</sub>) and I(<sup>2</sup>P<sub>1/2</sub>) atoms from CH<sub>3</sub>I (CD<sub>3</sub>I) photodissociation, giving overlapping Newton diagrams with displaced centre of mass velocities. The relative reactivities to form Cl atoms are greater for the slower CH<sub>3</sub> speed group than the faster group by factors of ~1.5 for the reaction of CH<sub>3</sub> and ~2.5 for the reaction of CD<sub>3</sub>, consistent with the greater propensity of the faster methyl radicals to undergo electronically adiabatic reactions to form Cl(<sup>2</sup>P<sub>1/2</sub>). The average fraction of the available energy becoming product translational energy is = 0.48 ± 0.05 and 0.50 ± 0.03 for reaction of the faster and slower sets of CH<sub>3</sub> radicals, respectively. The Cl atoms are deduced to be preferentially forward scattered with respect to the HCl reagents, but the angular distributions from the dual beam imaging experiments require correction for under-detection of forward scattered Cl products
- …