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KOALA:  A program for the processing and decomposition of transient 
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Extracting meaningful kinetic traces from time-resolved absorption spectra is a non-trivial task, particularly for solution 

phase spectra where solvent interactions can substantially broaden and shift the transition frequencies.  Typically, each 

spectrum is composed of signal from a number of molecular species (e.g. excited states, intermediate complexes, product 

species) with overlapping spectral features.  Additionally, the profiles of these spectral features may evolve in time (i.e. 

signal non-linearity), further complicating the decomposition process.  Here we present a new program for decomposing 

mixed transient spectra into their individual component spectra and extracting the corresponding kinetic traces:  KOALA 

(Kinetics Observed After Light Absorption).  The software combines spectral target analysis with brute-force linear least 

squares fitting, which is computationally efficient because of the small non-linear parameter space of most spectral features.  

Within, we demonstrate the application of KOALA to two sets of experimental transient absorption spectra with multiple 

mixed spectral components.  Although designed for decomposing solution-phase transient absorption data, KOALA may in 

principle be applied to any time-evolving spectra with multiple components. 

I. INTRODUCTION 

          A transient absorption experiment captures the time-resolved dynamics of a chemical process from the time-evolution 

of its absorption spectrum.  Generally, a pump laser pulse will be used to initiate the reaction (by breaking a chemical bond or 

electronically exciting a molecule), and a second broadband probe laser pulse is then used to measure a change in the 

absorption spectrum of the system after an adjustable pump-probe time delay.1, 2  A typical transient absorption dataset might 

contain between 30-500 absorption spectra at different pump-probe time-delays, and each spectrum may contain features 

from multiple chemical species:  ground and excited state reactants, reaction intermediates, solvent complexes, product 

species and isomers, etc.  The absorption signals from these different species will often be heavily overlapped, and must first 

be separated from the combined total spectrum before the full story of the chemical process can be discerned. 
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Separating mixed spectral signals is a general concern in the fields of physical and analytical chemistry,3 and the 

problem is approached by two broad methodological categories:  target analysis and blind source separation.  Target analysis 

describes techniques in which a spectral and/or kinetic model is assumed and utilized to constrain the decomposition,4, 5 while 

blind source separation aims to separate the spectral signal based only on its time-variation in order to determine the most 

strongly contributing components.  Blind source separation is useful when no prior information is known about the 

component spectra or reaction kinetics, and includes methods such as Principal Component Analysis, Independent 

Component Analysis,6 and Multivariate Curve Resolution.7  The drawback of blind source separation methods is that the 

underdetermined nature of the decomposition problem often returns solutions that are mathematically or statistically optimal 

but ultimately unphysical,8 although this is less true for advanced methods like Multivariate Curve Resolution.9 Additionally, 

all blind source separation techniques have difficulty modeling non-linearity in the signal such as the broadening or shifting 

of the component spectra in time.   

Spectral target analysis is a particularly suitable and easily implemented technique for the decomposition of transient 

absorption spectra.  For instance, the absorption spectrum of a stable chemical species can be measured in isolation and used 

as a basis function for modeling its contribution to the transient spectrum.  The other components can often be well-modeled 

using simple Gaussian or Lorentzian profiles, which can be given floating width and position parameters in order to capture 

the time-dependents shifts due to vibrational cooling or other solvent interactions.  Target analysis does require some manual 

oversight by the analyst, however, in order to ensure that the parameters of the spectral model are sufficiently constrained to 

avoid over-fitting and to obtain physically reasonable spectral profiles and kinetic traces.  Data analysis software that can 

facilitate the convenient testing of various spectral models and constraints, and provide simultaneous feedback of the 

resulting kinetic traces, is therefore desirable. 

Here, we present the KOALA (Kinetics Observed After Light Absorption) software to allow the pre-processing, 

decomposition, and subsequent kinetic trace analysis of transient absorption data-sets.  KOALA uses an inelegant brute-force 

linear least squares algorithm to allow non-linear fitting of the spectra, which can counter-intuitively result in a faster 

computation of the best global fit than standard non-linear optimization methods due to the relatively small non-linear 

parameter space.  This approach allows the decomposition to be computed efficiently and simultaneously with pre-processing 

and kinetic analysis, such that different spectral models can be easily tested.  All of these features are incorporated into an 

intuitive graphical user interface for additional ease of use and to provide real-time feedback during analysis. 
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II. SPECTRUM PRE-PROCESSING 

 Transient pump-probe absorption spectra are subject to several unwanted but systematic experimental effects that must 

be corrected for before the spectra may be analyzed.  The KOALA program incorporates three main procedures for correcting 

these unwanted effects:  negative-time subtraction, re-baselining, and chirp correction.  These procedures will be briefly 

reviewed here. 

 

Figure 1:  Transient vibrational spectrum of a solution of ICN in 5% methanol / 95% dichloromethane, after 266 nm 

photolysis of the I-CN bond.  Before analysis is possible, the raw spectra (a) are first negative-time corrected to 

remove imprinted structure from the probe spectrum (b) and then re-baselined to correct for transient lensing effects 

(c). 

 
A. Negative-time subtraction 
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A negative-time transient spectrum (i.e. a spectrum where the probe pulse arrives before the pump pulse) should 

theoretically result in a flat zero-value baseline.  In reality, slight non-linearity in the photon detection efficiency of the 

detector can distort this baseline and imprint the wavelength distribution of the probe light onto the transient absorption 

spectrum.  Therefore, it is common practice to subtract a negative time spectrum from each time-resolved spectrum in the 

dataset in order to correct for this distortion.1  For spectra collected from experiments where the repetition rate of the laser is 

faster than the flow rate of the sample solution, negative-time subtraction has the added benefit of correcting for the presence 

of long lived product signal generated from previous pump/probe laser shots.  Figure 1 displays a set of transient vibrational 

absorption spectra before (a) and after (b) subtracting the negative time spectrum, correcting some of the imprinted frequency 

oscillations caused by etaloning effects in the difference frequency generation crystal responsible for generating the infrared 

probe pulse.   

B.  Re-baselining 

As observed in Figure 1, transient spectra are often subject to large time-dependent baseline offsets.  The offsets are due 

to pump-induced transient lensing effects.10, 11  Absorption of the Gaussian-profiled pump laser causes a spatial gradient in 

either the energetic state population or structure of the solvent, which leads to a corresponding refractive index gradient in the 

sample.  The end result is a slight deflection and focusing of the probe beam as it propagates through the liquid sample, 

altering the coupling of the probe into the detector and leading to the observed baseline shifts.  Although transient lensing can 

be reduced by using low sample concentrations, reduced pump power, and focusing the probe beam into the sample more 

tightly than the pump beam, it cannot generally be eliminated and thus must be corrected for by re-baselining.  KOALA 

allows up to five user-defined signal-free baseline regions to be selected and fit with a quadratic, linear, or unit function 

which is then subtracted from the experimental spectrum.  Unfortunately, re-baselining can only be reliably performed when 

signal-free regions of the spectrum can be confidently identified.  Figure 1 (c) demonstrates the result of applying a linear 

baseline correction to the negative-time subtracted spectra shown in Figure 1 (b). 
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Figure 2:  Raw (a) and chirp-corrected (b) transient electronic spectra of a 30 mM solution of catechol in 

dichloromethane after 266 nm excitation.  The dashed horizontal line in (a) defines the time zero threshold 

absorbance, and the inset plot shows the wavelength dependence of time zero with the best fit function to Equation 

(1).  The plot indicates a positive chirp, characterized by a GDD of 80 fs2/rad, and a TOD of -86 fs3/rad2.  

 
C.  Chirp correction 

Although not typically an issue for infrared probe wavelengths, the ultraviolet-visible super-continuum generated for 

transient electronic absorption experiments can be subject to substantial spectral chirp.  The effect of this on the transient 

spectrum is that each frequency detected on a broadband detector will have a unique “time zero”, when the pump and probe 

laser pulses are overlapped in time.  Although it is possible to reduce the chirp experimentally,12 the effect can be corrected 

for during spectral pre-processing if enough early-time spectra are collected.1, 13  The chirp-correcting procedure incorporated 

in the KOALA program is outline below and demonstrated in Figure 2: 

1. First, the unique time zero for each wavelength, t0, is defined as the moment when the absorbance reaches a user-set 

threshold. 
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2. Time zero is plotted as a function of wavelength, and fit with the Equation (1) to determine the absolute phase 

(ABP), the group delay dispersion (GDD), and the third order dispersion (TOD).14, 15 

𝑡0(𝜆) = 𝐴𝐵𝑃 + 𝐺𝐷𝐷 (
2𝜋𝑐

𝜆
) +

1

2
𝑇𝑂𝐷 (

2𝜋𝑐

𝜆
)

2

                (1) 

3. The absorbance values of each wavelength of each spectrum at a particular time delay are re-assigned to a modified 

time delay based Equation (1).  As only a discrete number of time delays can be obtained experimentally, most of the 

new absorbance values are obtained by linear interpolation of the available spectra.  Small experimental time-steps, at 

least at early times where the spectra may be rapidly evolving, are therefore desirable for obtaining accurate interpolated 

absorbance values.  

Because each chirp-corrected spectrum includes signal contributions from many experimental spectra, it should be mentioned 

that an abnormal signal level in one experimental spectrum will propagate into all of the chirp-corrected spectra.  This effect 

is responsible for the sharp spikes at the blue end of the spectrum in Figure 2, and can be minimized by acquiring more 

spectra at early time delays.  Regardless, as long as the artifact spikes are significantly narrower than the underlying spectral 

features, the ultimate effect on the extracted kinetic traces will be minimal. 

 

III. DECOMPOSITION OF SPECTRAL COMPONENTS 

A. Linear least squares decomposition 

The spectral decomposition in KOALA is based on Linear Least Squares regression using a particular spectral model as 

the basis set.  Each experimental transient spectrum, [𝐴]𝜆, can be decomposed as the sum of n component spectra, [𝐶]𝑛,𝜆, 

each weighted by a weighting factor, [𝐼]𝑛, related to the concentration of that component. 

[𝐴]𝜆 = [𝐶]𝑛,𝜆[𝐼]𝑛 + [𝜖]𝜆                                    (2) 

In Eqn. (1),  [𝜖]𝜆 is the residual signal not captured by the spectral model.  The best fit decomposition is obtained when 

the residual is minimized, which occurs when [𝜖]𝜆 is orthogonal to [𝐶]𝑛,𝜆 and thus [𝐶]𝑇
𝑐,𝜆

[𝜖]𝜆 = 0.  Substituting this 

expression into Equation (2) and solving for [𝐼]𝑛 results in the equation for the best-fit component weights: 
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[𝐼]𝑛 = ([𝐶]𝑛,𝜆
𝑇[𝐶]𝑛,𝜆)

−1
[𝐶]𝑛,𝜆

𝑇[𝐴]𝜆                 (3) 

 Plotting [𝐼]𝑛 as a function of time gives the kinetic trace of the components, which is the main result of the 

decomposition analysis.  The decomposed spectrum can be recovered by substituting the weighting factors obtained from 

Equation (3) into Equation (2). 

B. Non-linear decomposition by brute force linear least squares 

A limitation of pure linear least squares decomposition is that the individual spectral components must evolve linearly in 

time.  That is, only their weighting factor, and not their spectral profile, is allowed to change.  In reality this is often not the 

case, as particular spectral features may shift or narrow in time as they structurally relax or their solvation environment is 

altered.  When the shapes of the spectral components change in time, the spectral decomposition can no longer be solved 

analytically, and iterative non-linear optimization methods must be employed.  Non-linear least squares algorithms, such as 

the popular Levenberg-Marquardt method, find minima on multi-parameter surfaces by using an estimated Hessian matrix to 

intelligently guide their search over the parameter space.16, 17  When the parameter space is small and sufficiently discretized, 

however, it is faster to simply perform an analytical least squares calculation for each possible non-linear parameter value and 

choose the value which returns the best fit to the data.  Most UV-VIS array detectors are typically composed of about 1000 

pixels, and infrared array detectors contain no more than a few hundred. Non-linear evolution of the spectral components is 

generally subtle, and a spectral feature might only shift by 10-20 pixels.  Therefore, two-parameter functions such as a 

Gaussian spectral feature with floating width and shift parameters will only realistically require a few hundred least squares 

calculations, which most modern computers can perform in a less than ten milliseconds.  For basis functions requiring more 

than two floating parameters, a brute force linear least squares fit quickly becomes impractical.  Brute force linear least 

squares also becomes impractical if multiple overlapping components are fit with floating parameters, although we 

recommend against constructing such models as the decomposition will most likely suffer from over-fitting and the resulting 

kinetic traces will become nonphysical.  The KOALA fitting algorithm therefore optimizes each nonlinear spectral 

component independently, for the purposes of computational efficiency.   

C. Choosing spectral component basis functions  

First, any stable species in the sample should be modeled using its static absorption spectrum, when it is available.  

Bleaches in the transient spectrum, arising from molecules initially present in the system that are destroyed by the pump 

laser, can usually be modeled in this manner.  This approach is convenient since transient bleaches are often overlapped by 

positive signal from an excited or intermediate state, which can be decomposed much more easily if the bleach profile is 
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already known.  When another isolated bleach feature from the same molecule is present in the spectrum, the decomposition 

becomes even easier as the timescale of the bleach recovery is also well-defined. 

After all the stable species have been accounted for, the spectrum of remaining features can be modeled using logical 

functions.  In transient infrared spectra, most features can be modeled as simple Gaussian or Lorentzian functions.  Transient 

UV-VIS spectra do not always assume such pleasing functional forms, and require a more elaborate effort from the analyzer.  

One try, if the profile of the transient spectrum appears to settle to a final form at late time-delays, is to use the late time 

spectrum as the basis function representing the chemical product.  KOALA also allows the construction of basis functions of 

arbitrary form from the sum of multiple Gaussian functions, if there is experimental or theoretical justification for the use of a 

particular spectral profile.  When all else fails, some kinetic information can be extracted by simply forgoing decomposition 

and integrating the total transient signal over different wavelength ranges, and looking for differences in the time constants of 

the kinetic traces.  All of these modeling methods have been implemented in KOALA in a convenient and accessible manner. 

After all of the desired spectral features have been modeled with linear functions, various non-linear parameters can be 

floated.  Although allowing all of the non-linear parameters to float will always result in a fit with a smaller residual, this will 

not necessarily result in the most physically correct model.  Shifting or narrowing in the spectrum is the result of a kinetic 

process, and thus a floated position or width parameter should evolve with an exponential time constant.  If a particular 

floated parameter varies chaotically in time, the model is simply fitting noise and the parameter should remain fixed.  Care 

should be taken to constrain the limiting parameter values such that spectral features other than the one intended are not 

accidently fit by stray basis functions.  
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Figure 3:  Decomposed transient vibrational spectrum of a solution of ICN in 5% methanol / 95% dichloromethane, 

180 ps after 266 nm photolysis of the I-CN bond. 

 

D. Example analysis of transient absorption datasets 

Figure 3 shows the transient vibrational absorption spectrum of a solution of ICN in 5% methanol / 95% 

dichloromethane, 180 ps after 266 nm photolysis of the I-CN bond (from the dataset displayed in Figure 1).  The resulting 

∙CN radicals can then either promptly recombine to reform ICN or the INC isomer, or react with hydrogen atoms on either of 

the solvent molecules to form HCN.  The transient vibrational spectrum from 2000-2200 cm-1 is crowded with a number of 

spectral features that can be assigned as follows:  an ICN bleach (2164 cm-1), an INC feature (2065 cm-1),  a feature due to an 

intermediate complex of CN with the solvent (2043 cm-1),18 an HCN product feature (2085 cm-1) that is formed vibrationally 

hot and relaxes in time (as evidenced by the blue shifting of the spectral feature in time), a broad methanol bleach (2044 cm-1) 

that grows as it is consumed by reactions with the ∙CN radical, and two sharper bleaches (2053, 2126 cm-1) from 

dichloromethane also due to consumption by reactions with the ∙CN radical.  A detailed interpretation and assignment of 

bands in the spectrum are discussed in detail elsewhere,19 but here we simply note that many of the features are partially, or 

wholly, overlapped and must be properly decomposed in order to extract their kinetic traces.  

Following the procedure outlined in the preceding section, we first import static infrared spectra of neat dichloromethane 

and methanol to be used as basis functions representing their corresponding molecular species.  Although the HCN product is 

stable and could also be modeled using its static absorption spectrum, we observe that it displays some time-dependent 
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shifting (due to being formed vibrationally hot)20 and thus choose instead to model the HCN feature with a Gaussian function 

with a variable peak center.  The neighboring INC feature does not display a noticeable time-dependent shift, and thus we 

choose a linearly weighted Gaussian function to represent the INC component.   

The spectrum around 2040 cm-1 is composed of absorption features from three different molecules: methanol, 

dichloromethane, and the CN-solvent complex (CN*).  The dichloromethane contribution here has already been 

independently determined by the isolated dichloromethane bleach feature at 2126 cm-1, but the relative weightings of the 

methanol and CN* contributions are ambiguous as many combinations of weighting factors will lead to an acceptable fit.  

Therefore, we must apply some additional constraints to our model.  One method is to remove the methanol contribution 

from the least squares fit, which we can do if we know both its spectral profile (which we do from the FTIR spectrum) and its 

kinetic behavior.  First, we can see from the early time spectra in Figure 1 that no methanol bleach is initially present, so we 

can assume this feature starts off with a contribution of zero.  From our late time spectrum we can see that the CN* 

intermediate complex has been consumed within the time window of the experiment, and thus the signal in that region of the 

spectrum arises from only the methanol bleach.  Therefore, we know the bleach grows in from zero to its late time limit, and 

the only thing we do not know is the timescale of this growth.   

The time evolution of the methanol bleach can be estimated a number of ways.  From our reactive model, we could 

assume the growth should match the timescale of the HCN feature growth (as both features arise due to the same reactive 

step), which is a roughly exponential growth with a time constant of ~150 ps.  We could also integrate the spectral signal on 

the red edge of the methanol bleach, which is broad and probably has only a small contribution from the CN-complex feature 

in this region.  The low wavenumber side of the bleach shows exponential depletion with a time constant of ~300 ps.  

Therefore, we fix the methanol bleach to grow in with an exponential time constant between 150-300 ps, and fit the CN-

complex to the remaining signal.  We find by trial that choosing any time constant between 150-300 ps makes very little 

difference to the resulting kinetic traces of the remaining features. 
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Figure 4:  Decomposed transient electronic absorption spectrum of a 30mM catechol solution in dichloromethane, 70 

fs after pumping with a 266 nm laser pulse.  Two features are present:  a broad flat feature attributed to the excited 

state absorption of catechol (red), and a short lived (<250 fs) feature around 360 nm due to two photon absorption 

when the pump and probe lasers are temporally overlapped (blue). 

Transient electronic spectra can be difficult to decompose, as the spectral profiles of the components can assume a 

variety of forms.  The transient electronic spectra of catechol shown in Figure 2 are comprised of two components: a broad 

catechol excited state absorption (ESA) that spans the detected wavelength range, and a short lived two-photon absorption 

(TPA) feature at 340 nm present only when the pump and probe pulses are temporally overlapped.21  We use a late time 

transient spectrum as a basis function to model the excited state feature, as the spectral profile of the excited state does not 

noticeably change during the time window of the experiment, and a Gaussian function to model the two-photon signal at 

early times.  The Gaussian function only roughly fits the experimental data, but as evidenced in Figure 5, is sufficient to 

produce reasonable kinetic traces. 

 

IV. KINETIC TRACE ANALYSIS 

The kinetic traces of the modeled components are generated from the weighting factors computed by the least squares 

regression during the decomposition step.  Each basis function is area-normalized before decomposition, so that the 

weighting factor obtained from the least squares regression is always proportional to the concentration of the modeled 

component, regardless of changes in basis function width over time.   
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The KOALA program can be set to fit the kinetic traces with mono or bi-exponential functions to estimate the time 

constants of the chemical reactions involved in the measured system, although a simultaneous fit of all the kinetic traces to 

the integrated rate equations describing a particular chemical model is a more rigorous approach (and is implemented in a 

separate software package).22  The kinetic traces do, however, provide useful feedback for spectral pre-processing and 

decomposition.  For instance, it must be ensured that the re-baselining process does not artificially create time-evolving 

signal where there should be none.  Additionally, when spectral components are overlapping, the expected late-time 

evolution of the system can be used as a constraint on the shapes and positions of the basis functions when this information is 

ambiguous.  For example, if a reagent or transient intermediate is completely consumed during the measured timescale, the 

basis functions can be optimized under the condition that their late-time signal asymptotically approaches zero.   

 

Figure 5:  Kinetic traces obtained from the decomposition of Figure 1, fit with bi-exponential functions (left), and 

Figure 2, fit with exponentially modified Gaussian functions and assuming an instrument response function of 100 fs 

(right).   

 
Kinetic traces can also be fit with mono or bi-exponential functions that have been convolved with a Gaussian instrument 

response function of a particular full-width-half-maximum, defined by the temporal width of the experimental laser pulses.23  

This convolution results in the following bi-exponentially modified Gaussian function (without the second term for a mono-

exponentially modified Gaussian function): 

[𝐼]𝑛(𝑡) = 𝑌 −
𝑌

2
𝐸𝑟𝑓𝑐 [

−𝑡

√2𝜎
] + 

𝐴

2
 𝑒𝑥𝑝(0.5𝜆1(−2𝑡 + 𝜆1𝜎2))𝐸𝑟𝑓𝑐 [

−𝑡 + 𝜆1𝜎2

√2𝜎
]

+
𝐵

2
 𝑒𝑥𝑝(0.5𝜆2(−2𝑡 + 𝜆2𝜎2))𝐸𝑟𝑓𝑐 [

−𝑡 + 𝜆2𝜎2

√2𝜎
]                                                    (4) 
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where t is the pump-probe delay time, 𝜆𝑛 represents the exponential decay rates (1/ 𝜆 = the time constant of the reaction), Y 

represents the asymptotic limit of the weighting factor at infinite time, and 𝜎 is related to the full-width-half-maximum 

(FWHM) of the Gaussian instrument response function by FWHM = 2√2𝑙𝑛2𝜎. 

 Figure 5 shows the resulting kinetic traces obtained from decomposition of the example datasets in the previous section.  

The traces exhibit satisfactory exponential time evolution consistent with the expected kinetics, despite the absence of kinetic 

constraints (apart from the methanol trace, as discussed in the previous section) being applied during the spectral 

decomposition.  An animation (generated using KOALA) of the time-evolving decomposed transient spectrum and 

corresponding kinetic traces from Figure 5 can be found in the supplemental material.24 

 

V. CONCLUSION 

We have detailed the methodology of KOALA, new data analysis software for pre-processing, decomposing, and 

extracting kinetic traces from time-resolved spectra.  The simultaneous computation and visualization of these processes 

allows real-time feedback during the testing of spectral models.25  KOALA uses a constrained brute-force linear least squares 

technique to allow for non-linear evolution of the component spectra during decomposition in a computationally efficient 

manner, and includes tools for importing or creating spectral model functions. The software is written in LABVIEW, and the 

source code is freely available, along with a stand-alone executable file.26 
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