61 research outputs found

    The Complete Mitogenome of the Mountain Chicken Frog, Leptodactylus fallax

    Get PDF
    The mountain chicken frog (Leptodactylus fallax) is a critically endangered frog native to the Caribbean islands of Dominica and Montserrat. Over the past 25 years their populations have declined by over 85%, largely due to a chytridiomycosis outbreak that nearly wiped out the Montserratian population. Within the context of developing tools that can aid in the conservation of the mountain chicken frog, we assembled its complete mitochondrial genome, contributing the first complete mitogenome of the genus Leptodactylus (Genbank Accession number MW260634). The circular genome is 18,669 bp long and contains 37 genes. A phylogenetic analysis reveals that L. fallax forms a clade with Leptodactylus melanonotus, highlighting the close relationship of Leptodactylus spp. relative to other species from the superfamily Hyloidea included in the analysis

    The Complete Mitogenome of the Mountain Chicken Frog, Leptodactylus fallax

    Get PDF
    The mountain chicken frog (Leptodactylus fallax) is a critically endangered frog native to the Caribbean islands of Dominica and Montserrat. Over the past 25 years their populations have declined by over 85%, largely due to a chytridiomycosis outbreak that nearly wiped out the Montserratian population. Within the context of developing tools that can aid in the conservation of the mountain chicken frog, we assembled its complete mitochondrial genome, contributing the first complete mitogenome of the genus Leptodactylus (Genbank Accession number MW260634). The circular genome is 18,669 bp long and contains 37 genes. A phylogenetic analysis reveals that L. fallax forms a clade with Leptodactylus melanonotus, highlighting the close relationship of Leptodactylus spp. relative to other species from the superfamily Hyloidea included in the analysis

    Optimising recovery of DNA from minimally invasive sampling methods: Efficacy of buccal swabs, preservation strategy and DNA extraction approaches for amphibian studies

    Get PDF
    \ua9 2024 The Author(s). Ecology and Evolution published by John Wiley & Sons Ltd.Studies in evolution, ecology and conservation are increasingly based on genetic and genomic data. With increased focus on molecular approaches, ethical concerns about destructive or more invasive techniques need to be considered, with a push for minimally invasive sampling to be optimised. Buccal swabs have been increasingly used to collect DNA in a number of taxa, including amphibians. However, DNA yield and purity from swabs are often low, limiting its use. In this study, we compare different types of swabs, preservation method and storage, and DNA extraction techniques in three case studies to assess the optimal approach for recovering DNA in anurans. Out of the five different types of swabs that we tested, Isohelix MS-02 and Rapidry swabs generated higher DNA yields than other swabs. When comparing storage buffers, ethanol is a better preservative than a non-alcoholic alternative. Dried samples resulted in similar or better final DNA yields compared to ethanol-fixed samples if kept cool. DNA extraction via a Qiagen™ DNeasy Blood and Tissue Kit and McHale\u27s salting-out extraction method resulted in similar DNA yields but the Qiagen™ kit extracts contained less contamination. We also found that samples have better DNA recovery if they are frozen as soon as possible after collection. We provide recommendations for sample collection and extraction under different conditions, including budgetary considerations, size of individual animal sampled, access to cold storage facilities and DNA extraction methodology. Maximising efficacy of all of these factors for better DNA recovery will allow buccal swabs to be used for genetic and genomic studies in a range of vertebrates

    Using DNA metabarcoding to explore spatial variation in diet across European Hawfinch populations

    Get PDF
    The investigation of diet in avian species is essential for understanding their ecology and local adaptations, as well as long-term conservation. This can be particularly challenging because of the wide distribution and high ecological plasticity of many bird species. Here, we focused on the Hawfinch (Coccothraustes coccothraustes), which has shown variation in population trends. Across Europe, central and eastern European populations are moderately declining while western European populations are moderately increasing. Ecological drivers behind these differing trends are still unknown; one possibility is differences in diet, yet little research has been conducted into Hawfinch diet in mainland Europe or elsewhere. Dietary richness and variation are under-studied in woodland bird species, due primarily to challenges in accurately identifying plant and invertebrate taxa consumed. This study presents the first molecular dietary analysis of Hawfinch populations across two European countries. Faecal samples were collected between January and July of 2019 from Hawfinch caught at six artificial feed sites: two in Denmark and four in Germany. We successfully extracted DNA from 80 samples by amplifying plant Internal Transcribed Spacer 2 (ITS2) and invertebrate Cytochrome Oxidase Subunit 1 (COI) barcodes. A total of 35 plant and 37 invertebrate taxa were found, with plant and insect orders Fagales and Lepidoptera, respectively, the most frequently detected. Hawfinch dietary composition differed significantly between European countries, suggesting Hawfinch can make use of available food resources that are likely to differ spatially. Our study shows how DNA metabarcoding can be used to provide novel ecological information associated with under-studied bird species, thus providing essential information for future management and conservation of Hawfinch and their habitats

    Money spider dietary choice in pre- and post-harvest cereal crops using metabarcoding

    Get PDF
    Money spiders (Linyphiidae) are an important component of conservation biological control in cereal crops, but they rely on alternative prey when pests are not abundant, such as between cropping cycles. To optimally benefit from these generalist predators, prey choice dynamics must first be understood. Money spiders and their locally available prey were collected from cereal crops 2 weeks pre‐ and post‐harvest. Spider gut DNA was amplified with two novel metabarcoding primer pairs designed for spider dietary analysis, and sequenced. The combined general and spider‐exclusion primers successfully identified prey from 15 families in the guts of the 46 linyphiid spiders screened, whilst avoiding amplification of Erigone spp. The primers show promise for application to the diets of other spider families such as Agelenidae and Pholcidae. Distinct invertebrate communities were identified pre‐ and post‐harvest, and changes in spider diet and, to a lesser extent, prey choice reflected this. Spiders were found to consume one another more than expected, indicating their propensity towards intraguild predation, but also consumed common pest families. Changes in spider prey choice may redress prey community changes to maintain a consistent dietary intake. Consistent provision of alternative prey via permanent refugia should be considered to sustain effective conservation biocontrol

    Optimising recovery of DNA from minimally invasive sampling methods: Efficacy of buccal swabs, preservation strategy and DNA extraction approaches for amphibian studies

    Get PDF
    Studies in evolution, ecology and conservation are increasingly based on genetic and genomic data. With increased focus on molecular approaches, ethical concerns about destructive or more invasive techniques need to be considered, with a push for minimally invasive sampling to be optimised. Buccal swabs have been increasingly used to collect DNA in a number of taxa, including amphibians. However, DNA yield and purity from swabs are often low, limiting its use. In this study, we compare different types of swabs, preservation method and storage, and DNA extraction techniques in three case studies to assess the optimal approach for recovering DNA in anurans. Out of the five different types of swabs that we tested, Isohelix MS‐02 and Rapidry swabs generated higher DNA yields than other swabs. When comparing storage buffers, ethanol is a better preservative than a non‐alcoholic alternative. Dried samples resulted in similar or better final DNA yields compared to ethanol‐fixed samples if kept cool. DNA extraction via a Qiagen™ DNeasy Blood and Tissue Kit and McHale's salting‐out extraction method resulted in similar DNA yields but the Qiagen™ kit extracts contained less contamination. We also found that samples have better DNA recovery if they are frozen as soon as possible after collection. We provide recommendations for sample collection and extraction under different conditions, including budgetary considerations, size of individual animal sampled, access to cold storage facilities and DNA extraction methodology. Maximising efficacy of all of these factors for better DNA recovery will allow buccal swabs to be used for genetic and genomic studies in a range of vertebrates

    Dynamics and genetics of a disease-driven species decline to near extinction:lessons for conservation

    Get PDF
    Amphibian chytridiomycosis has caused precipitous declines in hundreds of species worldwide. By tracking mountain chicken (Leptodactylus fallax) populations before, during and after the emergence of chytridiomycosis, we quantified the real-time species level impacts of this disease. We report a range-wide species decline amongst the fastest ever recorded, with a loss of over 85% of the population in fewer than 18 months on Dominica and near extinction on Montserrat. Genetic diversity declined in the wild, but emergency measures to establish a captive assurance population captured a representative sample of genetic diversity from Montserrat. If the Convention on Biological Diversity's targets are to be met, it is important to evaluate the reasons why they appear consistently unattainable. The emergence of chytridiomycosis in the mountain chicken was predictable, but the decline could not be prevented. There is an urgent need to build mitigation capacity where amphibians are at risk from chytridiomycosis.</p

    Innate and adaptive immune genes associated with MERS-CoV infection in dromedaries

    Get PDF
    The recent SARS-CoV-2 pandemic has refocused attention to the betacoronaviruses, only eight years after the emergence of another zoonotic betacoronavirus, the Middle East respiratory syndrome coronavirus (MERS-CoV). While the wild source of SARS-CoV-2 may be disputed, for MERS-CoV, dromedaries are considered as source of zoonotic human infections. Testing 100 immune-response genes in 121 dromedaries from United Arab Emirates (UAE) for potential association with present MERS-CoV infection, we identified candidate genes with important functions in the adaptive, MHC-class I (HLA-A-24-like) and II (HLA-DPB1-like), and innate immune response (PTPN4, MAGOHB), and in cilia coating the respiratory tract (DNAH7). Some of these genes previously have been associated with viral replication in SARS-CoV-1/-2 in humans, others have an important role in the movement of bronchial cilia. These results suggest similar host genetic pathways associated with these betacoronaviruses, although further work is required to better understand the MERS-CoV disease dynamics in both dromedaries and humans
    • …
    corecore