6,287 research outputs found

    A low-loss photonic silica nanofiber for higher-order modes

    Full text link
    Optical nanofibers confine light to subwavelength scales, and are of interest for the design, integration, and interconnection of nanophotonic devices. Here we demonstrate high transmission (> 97%) of the first family of excited modes through a 350 nm radius fiber, by appropriate choice of the fiber and precise control of the taper geometry. We can design the nanofibers so that these modes propagate with most of their energy outside the waist region. We also present an optical setup for selectively launching these modes with less than 1% fundamental mode contamination. Our experimental results are in good agreement with simulations of the propagation. Multimode optical nanofibers expand the photonic toolbox, and may aid in the realization of a fully integrated nanoscale device for communication science, laser science or other sensing applications.Comment: 12 pages, 5 figures, movies available onlin

    Intermodal Energy Transfer in a Tapered Optical Fiber: Optimizing Transmission

    Full text link
    We present an experimental and theoretical study of the energy transfer between modes during the tapering process of an optical nanofiber through spectrogram analysis. The results allow optimization of the tapering process, and we measure transmission in excess of 99.95% for the fundamental mode. We quantify the adiabaticity condition through calculations and place an upper bound on the amount of energy transferred to other modes at each step of the tapering, giving practical limits to the tapering angle.Comment: 29 pages, 17 figure

    Creation of an Ultracold Neutral Plasma

    Get PDF
    We report the creation of an ultracold neutral plasma by photoionization of laser-cooled xenon atoms. The charge carrier density is as high as 2 x 10^9 cm^-3, and the temperatures of electrons and ions are as low as 100 mK and 10 uK, respectively. Plasma behavior is evident in the trapping of electrons by the positive ion cloud when the Debye screening length becomes smaller than the size of the sample. We produce plasmas with parameters such that both electrons and ions are strongly coupled.Comment: 4 pages, 3 figure

    An atomic interface between microwave and optical photons

    Full text link
    A complete physical approach to quantum information requires a robust interface among flying qubits, long-lifetime memory and computational qubits. Here we present a unified interface for microwave and optical photons, potentially connecting engineerable quantum devices such as superconducting qubits at long distances through optical photons. Our approach uses an ultracold ensemble of atoms for two purposes: quantum memory and to transduce excitations between the two frequency domains. Using coherent control techniques, we examine an approach for converting and storing quantum information between microwave photons in superconducting resonators, ensembles of ultracold atoms, and optical photons as well as a method for transferring information between two resonators.Comment: 5 pages, 3 figure

    Polar Field Reversal Observations with Hinode

    Full text link
    We have been monitoring yearly variation in the Sun's polar magnetic fields with the Solar Optical Telescope aboard {\it Hinode} to record their evolution and expected reversal near the solar maximum. All magnetic patches in the magnetic flux maps are automatically identified to obtain the number density and magnetic flux density as a function of th total magnetic flux per patch. The detected magnetic flux per patch ranges over four orders of magnitude (101510^{15} -- 102010^{20} Mx). The higher end of the magnetic flux in the polar regions is about one order of magnitude larger than that of the quiet Sun, and nearly that of pores. Almost all large patches (1018 \geq 10^{18} Mx) have the same polarity, while smaller patches have a fair balance of both polarities. The polarity of the polar region as a whole is consequently determined only by the large magnetic concentrations. A clear decrease in the net flux of the polar region is detected in the slow rising phase of the current solar cycle. The decrease is more rapid in the north polar region than in the south. The decrease in the net flux is caused by a decrease in the number and size of the large flux concentrations as well as the appearance of patches with opposite polarity at lower latitudes. In contrast, we do not see temporal change in the magnetic flux associated with the smaller patches (<1018 < 10^{18} Mx) and that of the horizontal magnetic fields during the years 2008--2012.Comment: 21 pages, 7 figures. Accepted for publication in Ap
    corecore