434 research outputs found
Fibroblast Growth Factors: Biology, Function, and Application for Tissue Regeneration
Fibroblast growth factors (FGFs) that signal through FGF receptors (FGFRs) regulate a broad spectrum of biological functions, including cellular proliferation, survival, migration, and differentiation. The FGF signal pathways are the RAS/MAP kinase pathway, PI3 kinase/AKT pathway, and PLCÎł pathway, among which the RAS/MAP kinase pathway is known to be predominant. Several studies have recently implicated the in vitro biological functions of FGFs for tissue regeneration. However, to obtain optimal outcomes in vivo, it is important to enhance the half-life of FGFs and their biological stability. Future applications of FGFs are expected when the biological functions of FGFs are potentiated through the appropriate use of delivery systems and scaffolds. This review will introduce the biology and cellular functions of FGFs and deal with the biomaterials based delivery systems and their current applications for the regeneration of tissues, including skin, blood vessel, muscle, adipose, tendon/ligament, cartilage, bone, tooth, and nerve tissues
FGF8 isoform b expression in human prostate cancer.
Overexpression of fibroblast growth factor 8 (FGF8) mRNA has been previously described in prostate cancer. Of its four isoforms, FGF8b is thought to be the most important in carcinogenesis. We hypothesised that immunodetection of FGF8b in archival prostate cancer specimens is of potential prognostic value. Using a selected cohort of prostate tumours from transurethral (n=30) and radical prostatectomies (n=59), an optimised protocol for FGF8b immunoreactivity was used to corroborate expression with clinical parameters. No expression was observed in benign prostates (n=10). In prostate cancer, immunoreactivity was localised to the malignant epithelium with weak signals in the adjacent stroma. Expression of FGF8b in stage T1 and T2 cancers were 40 and 67%, respectively. In contrast, FGF8b expression was present in 94% of T3 and 100% of T4 cancers. By histological grade, FGF8b was found in 41% of low-grade cancers (Gleason score 4-6), 60% of intermediate-grade cancers (Gleason score 7 and 92% of high-grade cancers (Gleason score 8-10). The intensity of expression was significantly associated with stage (P=0.0004) and grade (P<0.0001) of disease. We further hypothesised that FGF8b overexpression resulted from enhanced transcription and translation rather than from abnormalities involving the FGF8 gene locus. This was tested by means of fluorescent in situ hybridisation in 20 cancer specimens to map the FGF8 gene locus. FGF8 gene copy number in benign and malignant nuclei was found to be similar (2.33+/-0.57 and 2.0+/-0.81, respectively P=0.51). Based on these findings, we propose a multicentre study on cohorts of patients to further evaluate FGF8b as a potential prognostic marker in prostate cancer
Brief Report: Sensorimotor Gating in Idiopathic Autism and Autism Associated with Fragile X Syndrome
Prepulse inhibition (PPI) may useful for exploring the proposed shared neurobiology between idiopathic autism and autism caused by FXS. We compared PPI in four groups: typically developing controls (n = 18), FXS and autism (FXS+A; n = 15), FXS without autism spectrum disorder (FXSâA; n = 17), and idiopathic autism (IA; n = 15). Relative to controls, the FXS+A (p < 0.002) and FXSâA (p < 0.003) groups had impaired PPI. The FXS+A (p < 0.01) and FXSâA (p < 0.03) groups had lower PPI than the IA group. Prolonged startle latency was seen in the IA group. The differing PPI profiles seen in the FXS+A and IA indicates these groups may not share a common neurobiological abnormality of sensorimotor gating
Postural Hypo-Reactivity in Autism is Contingent on Development and Visual Environment: A Fully Immersive Virtual Reality Study
Although atypical motor behaviors have been associated with autism, investigations regarding their possible origins are scarce. This study assessed the visual and vestibular components involved in atypical postural reactivity in autism. Postural reactivity and stability were measured for younger (12â15Â years) and older (16â33Â years) autistic participants in response to a virtual tunnel oscillating at different frequencies. At the highest oscillation frequency, younger autistic participants showed significantly less instability compared to younger typically-developing participants; no such group differences were evidenced for older participants. Additionally, no significant differences in postural behavior were found between all 4 groups when presented with static or without visual information. Results confirm that postural hypo-reactivity to visual information is present in autism, but is contingent on both visual environment and development
Evaluation of the fibroblast growth factor system as a potential target for therapy in human prostate cancer
Overexpression of fibroblast growth factors (FGFs) has been implicated in prostate carcinogenesis. FGFs function via their high-affinity interactions with receptor tyrosine kinases, FGFR1â4. Expression of FGFR1 and FGFR2 in prostate cancer (CaP) was not found to be associated with clinical parameters. In this report, we further investigated for abnormal FGFR expression in prostate cancer and explore their significance as a potential target for therapy. The expression levels of FGFR3 and FGFR4 in CaP were examined and corroborated to clinical parameters. FGFR3 immunoreactivity in benign prostatic hyperplasia (BPH) and CaP (n=26 and 57, respectively) had similar intensity and pattern. Overall, FGFR4 expression was significantly upregulated in CaP when compared to BPH. A significant positive correlation between FGFR4 expression and Gleason score was noted: Gleason score 7â10 tumours compared to BPH (P<0.0001, Fisher's exact test), Gleason score 4â6 tumours compared to BPH (P<0.0004), and Gleason 7â10 compared to Gleason 4â6 tumours (P<0.005). FGFR4 overexpression was associated with an unfavourable outcome with decreased disease-specific survival (P<0.04, log rank test). FGF-induced signalling is targeted using soluble FGF receptor (sFGFR), potent inhibitor of FGFR function. We have previously shown that sFGFR expression via a replication-deficient adenoviral vector (AdlllcRl) suppresses in vitro FGF-induced signalling and function in human CaP DU145 cells. We tested the significance of inhibiting FGF function along with conventional therapeutic modalities in CaP, and confirmed synergistic effects on in vitro cell growth (proliferation and colony formation) by combining sFGFR expression and treatment with either Paclitaxel (TaxolÂŽ) or Îł-irradiation. In summary, our data support the model of FGF system as valid target for therapy in CaP
Activation of FGF Signaling Mediates Proliferative and Osteogenic Differences between Neural Crest Derived Frontal and Mesoderm Parietal Derived Bone
BACKGROUND: As a culmination of efforts over the last years, our knowledge of the embryonic origins of the mammalian frontal and parietal cranial bones is unambiguous. Progenitor cells that subsequently give rise to frontal bone are of neural crest origin, while parietal bone progenitors arise from paraxial mesoderm. Given the unique qualities of neural crest cells and the clear delineation of the embryonic origins of the calvarial bones, we sought to determine whether mouse neural crest derived frontal bone differs in biology from mesoderm derived parietal bone. METHODS: BrdU incorporation, immunoblotting and osteogenic differentiation assays were performed to investigate the proliferative rate and osteogenic potential of embryonic and postnatal osteoblasts derived from mouse frontal and parietal bones. Co-culture experiments and treatment with conditioned medium harvested from both types of osteoblasts were performed to investigate potential interactions between the two different tissue origin osteoblasts. Immunoblotting techniques were used to investigate the endogenous level of FGF-2 and the activation of three major FGF signaling pathways. Knockdown of FGF Receptor 1 (FgfR1) was employed to inactivate the FGF signaling. RESULTS: Our results demonstrated that striking differences in cell proliferation and osteogenic differentiation between the frontal and parietal bone can be detected already at embryonic stages. The greater proliferation rate, as well as osteogenic capacity of frontal bone derived osteoblasts, were paralleled by an elevated level of FGF-2 protein synthesis. Moreover, an enhanced activation of FGF-signaling pathways was observed in frontal bone derived osteoblasts. Finally, the greater osteogenic potential of frontal derived osteoblasts was dramatically impaired by knocking down FgfR1. CONCLUSIONS: Osteoblasts from mouse neural crest derived frontal bone displayed a greater proliferative and osteogenic potential and endogenous enhanced activation of FGF signaling compared to osteoblasts from mesoderm derived parietal bone. FGF signaling plays a key role in determining biological differences between the two types of osteoblasts
PI3K/AKT is involved in mediating survival signals that rescue Ewing tumour cells from fibroblast growth factor 2-induced cell death
While in vitro studies had shown that fibroblast growth factor 2 (FGF2) can induce cell death in Ewing tumours, it remained unclear how Ewing tumour cells survive in vivo within a FGF2-rich microenvironment. Serum- and integrin-mediated survival signals were, therefore, studied in adherent monolayer and anchorage-independent colony cell cultures. In a panel of Ewing tumour cell lines, either adhesion to collagen or exposure to serum alone only had a minor protective effect against FGF2. However, both combined led to complete resistance to 5ângâmlâ1 FGF2 in three of four FGF2-sensitive cell lines (RD-ES, RM-82 and WE-68), and to an increased survival as compared to other culture conditions in TC-71 cells. Inhibition studies with LY294002 demonstrated that the serum signal is mediated via the phosphoinositide 3-OH kinase/AKT pathway. Thus, Ewing tumour cells escape FGF2-induced cell death by modulating FGF2 signalling. The tumour microenvironment provides the necessary survival signals by integrin-mediated adhesion and soluble serum factor(s). These survival signals warrant further investigation as a potential resistance mechanism to other apoptosis-inducing agents in vivo
Tyrosine kinase signalling in breast cancer: Fibroblast growth factors and their receptors
The fibroblast growth factors [Fgfs (murine), FGFs (human)] constitute a large family of ligands that signal through a class of cell-surface tyrosine kinase receptors. Fgf signalling has been associated in vitro with cellular differentiation as well as mitogenic and motogenic responses. In vivo, Fgfs are critical for animal development, and some have potent angiogenic properties. Several Fgfs have been identified as oncogenes in murine mammary cancer, where their deregulation is associated with proviral insertions of the mouse mammary tumour virus (MMTV). Thus, in some mammary tumours of MMTV-infected mouse strains, integration of viral genomic DNA into the somatic DNA of mammary epithelial cells was found to have caused the inappropriate expression of members of this family of growth factors. Although examination of human breast cancers has shown an altered expression of FGFs or of their receptors in some tumours, their role in the causation of breast disease is unclear and remains controversial
Autism as a disorder of neural information processing: directions for research and targets for therapy
The broad variation in phenotypes and severities within autism spectrum disorders suggests the involvement of multiple predisposing factors, interacting in complex ways with normal developmental courses and gradients. Identification of these factors, and the common developmental path into which theyfeed, is hampered bythe large degrees of convergence from causal factors to altered brain development, and divergence from abnormal brain development into altered cognition and behaviour. Genetic, neurochemical, neuroimaging and behavioural findings on autism, as well as studies of normal development and of genetic syndromes that share symptoms with autism, offer hypotheses as to the nature of causal factors and their possible effects on the structure and dynamics of neural systems. Such alterations in neural properties may in turn perturb activity-dependent development, giving rise to a complex behavioural syndrome many steps removed from the root causes. Animal models based on genetic, neurochemical, neurophysiological, and behavioural manipulations offer the possibility of exploring these developmental processes in detail, as do human studies addressing endophenotypes beyond the diagnosis itself
- âŚ