151 research outputs found

    Silanol-Assisted Carbinolamine Formation in an Amine-Functionalized Mesoporous Silica Surface: Theoretical Investigation by Fragmentation Methods

    Get PDF
    The aldol reaction catalyzed by an amine-substituted mesoporous silica nanoparticle (amine-MSN) surface was investigated using a large molecular cluster model (Si392O958C6NH361) combined with the surface integrated molecular orbital/molecular mechanics (SIMOMM) and fragment molecular orbital (FMO) methods. Three distinct pathways for the carbinolamine formation, the first step of the amine-catalyzed aldol reaction, are proposed and investigated in order to elucidate the role of the silanol environment on the catalytic capability of the amine-MSN material. The computational study reveals that the most likely mechanism involves the silanol groups actively participating in the reaction, forming and breaking covalent bonds in the carbinolamine step. Therefore, the active participation of MSN silanol groups in the reaction mechanism leads to a significant reduction in the overall energy barrier for the carbinolamine formation. In addition, a comparison between the findings using a minimal cluster model and the Si392O958C6NH361 cluster suggests that the use of larger models is important when heterogeneous catalysis problems are the target

    A touchdown nucleic acid amplification protocol as an alternative to culture backup for immunofluorescence in the routine diagnosis of acute viral respiratory tract infections

    Get PDF
    BACKGROUND: Immunofluorescence and virus culture are the main methods used to diagnose acute respiratory virus infections. Diagnosing these infections using nucleic acid amplification presents technical challenges, one of which is facilitating the different optimal annealing temperatures needed for each virus. To overcome this problem we developed a diagnostic molecular strip which combined a generic nested touchdown protocol with in-house primer master-mixes that could recognise 12 common respiratory viruses. RESULTS: Over an 18 month period a total of 222 specimens were tested by both immunofluorescence and the molecular strip. The specimens came from 103 males (median age 3.5 y), 80 females (median age 9 y) and 5 quality assurance scheme specimens. Viruses were recovered from a number of specimen types including broncho-alveolar lavage, nasopharyngeal secretions, sputa, post-mortem lung tissue and combined throat and nasal swabs. Viral detection by IF was poor in sputa and respiratory swabs. A total of 99 viruses were detected in the study from 79 patients and 4 quality control specimens: 31 by immunofluorescence and 99 using the molecular strip. The strip consistently out-performed immunofluorescence with no loss of diagnostic specificity. CONCLUSIONS: The touchdown protocol with pre-dispensed primer master-mixes was suitable for replacing virus culture for the diagnosis of respiratory viruses which were negative by immunofluorescence. Results by immunofluorescence were available after an average of 4–12 hours while molecular strip results were available within 24 hours, considerably faster than viral culture. The combined strip and touchdown protocol proved to be a convenient and reliable method of testing for multiple viruses in a routine setting

    New and conventional strategies for lung recruitment in acute respiratory distress syndrome

    Get PDF
    Mechanical ventilation is a supportive and life saving therapy in patients with acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Despite advances in critical care, mortality remains high. During the last decade, the fact that mechanical ventilation can produce morphologic and physiologic alterations in the lungs has been recognized. In this context, the use of low tidal volumes (VT) and limited inspiratory plateau pressure (Pplat) has been proposed when mechanically ventilating the lungs of patients with ALI/ARDS, to prevent lung as well as distal organ injury. However, the reduction in VT may result in alveolar derecruitment, cyclic opening and closing of atelectatic alveoli and distal small airways leading to ventilator-induced lung injury (VILI) if inadequate low positive end-expiratory pressure (PEEP) is applied. On the other hand, high PEEP levels may be associated with excessive lung parenchyma stress and strain and negative hemodynamic effects, resulting in systemic organ injury. Therefore, lung recruitment maneuvers have been proposed and used to open up collapsed lung, while PEEP counteracts alveolar derecruitment due to low VT ventilatio

    Mechanistic Elucidation of the Arylation of Non-Spectator N-Heterocyclic Carbenes at Copper Using a Combined Experimental and Computational Approach

    Get PDF
    CuI(NHC)Br complexes (NHC = N-heterocyclic carbene) undergo a direct reaction with iodobenzene to give 2-arylated benzimidazolium products. The nature of the N-substituent on the NHC ligand influences the reactivity of the CuI(NHC)Br complex toward arylation. N-Benzyl or N-phenyl substituents facilitate arylation, whereas N-mesityl substituents hinder arylation. Density functional theory calculations show that an oxidative addition/reductive elimination pathway involving CuIII species is energetically feasible. A less hindered CuI(NHC)Br complex with N-benzyl groups is susceptible to oxidation reactions to give 1,3-dibenzylbenzimidazolium cations containing a CuIBr anion (various polymorphs). The results described herein are of relevance to C–H functionalization of (benz)azoles

    Maternal high fat diet compromises survival and modulates lung development of offspring, and impairs lung function of dams (female mice)

    Get PDF
    © 2019 The Author(s). Published in Respiratory Research. Background: Epidemiological studies have identified strong relationships between maternal obesity and offspring respiratory dysfunction; however, the causal direction is not known. We tested whether maternal obesity alters respiratory function of offspring in early life. Methods: Female C57Bl/6 J mice were fed a high or low fat diet prior to and during two rounds of mating and resulting pregnancies with offspring lung function assessed at 2 weeks of age. The lung function of dams was measured at 33 weeks of age. Results: A high fat diet caused significant weight gain prior to conception with dams exhibiting elevated fasting glucose, and glucose intolerance. The number of surviving litters was significantly less for dams fed a high fat diet, and surviving offspring weighed more, were longer and had larger lung volumes than those born to dams fed a low fat diet. The larger lung volumes significantly correlated in a linear fashion with body length. Pups born from the second pregnancy had reduced tissue elastance compared to pups born from the first pregnancy, regardless of the dam's diet. As there was reduced offspring survival born to dams fed a high fat diet, the statistical power of lung function measures of offspring was limited. There were signs of increased inflammation in the bronchoalveolar lavage fluid of dams (but not offspring) fed a high fat diet, with more tumour necrosis factor-α, interleukin(IL)-5, IL-33 and leptin detected. Dams that were fed a high fat diet and became pregnant twice had reduced fasting glucose immediately prior to the second mating, and lower levels of IL-33 and leptin in bronchoalveolar lavage fluid. Conclusions: While maternal high fat diet compromised litter survival, it also promoted somatic and lung growth (increased lung volume) in the offspring. Further studies are required to examine downstream effects of this enhanced lung volume on respiratory function in disease settings
    • …
    corecore