33 research outputs found

    Endothelial-derived Dll4 and PDGF-BB reprogram committed skeletal myoblasts to a pericytes fate without erasing their myogenic memory

    Get PDF
    Pericytes are vessel associated mural cells that form the smooth muscle layer of vessels. They are able to contribute to skeletal muscle regeneration as previously demonstrated for mesoangioblasts that indeed represent their in vitro counterpart. Pericytes are a heterogeneous population characterized by different marker like Alkaline Phosphatase, Smooth muscle actin, Neuro glial2 (NG2). Endothelial cells recruit pericytes from the surrounding mesoderm progenitor through a PDGF-PDGFrB loop. In this work I have conducted experiments whose results showed that functional pericytes may derive from direct reprogramming of already committed embryonic and, less frequently, fetal skeletal myoblasts. When co-transplanted in vivo with endothelial cells, Pax3 or Myf5 expressing myoblasts, downregulate myogenic genes, with the notable exception of Myf5, upregulate pericyte markers, adopting a perithelial position and morphology in newly formed vessel networks. The activity of endothelial cells can be replaced by exposure to PDGF-BB and Dll4 but not Dll1 or Jagged 1, while inhibition of Notch signaling via a Îł-secretase inhibitor completely restores myogenesis, confirming that the skeletal myogenic program is not irreversibly erased. Notch activation in MyoD expressing embryonic cells in vivo abolishes myogenesis but not Myf5 expression that however cannot activate myogenin 7 and trigger myogenesis because Notch, beside suppressing MyoD transcription, activates Id and Twist factors that bind to and inhibit Myf5 transcriptional activity. Myf5 expressing cells activate pericyte genes and adopt a perithelial position, a phenomenon that can be rarely observed also in WT embryos. These data demonstrate that endothelial cells are able to directly reprogram committed skeletal myoblasts to mature pericytes for the formation and stabilization of vessel wall, suggesting that reprogramming occurs as a natural developmental process that leads in a sort of competition between endothelium and muscle

    Growth hormone secretagogues modulate inflammation and fibrosis in mdx mouse model of Duchenne muscular dystrophy

    Get PDF
    IntroductionGrowth hormone secretagogues (GHSs) exert multiple actions, being able to activate GHS-receptor 1a, control inflammation and metabolism, to enhance GH/insulin-like growth factor-1 (IGF-1)-mediated myogenesis, and to inhibit angiotensin-converting enzyme. These mechanisms are of interest for potentially targeting multiple steps of pathogenic cascade in Duchenne muscular dystrophy (DMD).MethodsHere, we aimed to provide preclinical evidence for potential benefits of GHSs in DMD, via a multidisciplinary in vivo and ex vivo comparison in mdx mice, of two ad hoc synthesized compounds (EP80317 and JMV2894), with a wide but different profile. 4-week-old mdx mice were treated for 8 weeks with EP80317 or JMV2894 (320 µg/kg/d, s.c.).ResultsIn vivo, both GHSs increased mice forelimb force (recovery score, RS towards WT: 20% for EP80317 and 32% for JMV2894 at week 8). In parallel, GHSs also reduced diaphragm (DIA) and gastrocnemius (GC) ultrasound echodensity, a fibrosis-related parameter (RS: ranging between 26% and 75%). Ex vivo, both drugs ameliorated DIA isometric force and calcium-related indices (e.g., RS: 40% for tetanic force). Histological analysis highlighted a relevant reduction of fibrosis in GC and DIA muscles of treated mice, paralleled by a decrease in gene expression of TGF-β1 and Col1a1. Also, decreased levels of pro-inflammatory genes (IL-6, CD68), accompanied by an increment in Sirt-1, PGC-1α and MEF2c expression, were observed in response to treatments, suggesting an overall improvement of myofiber metabolism. No detectable transcript levels of GHS receptor-1a, nor an increase of circulating IGF-1 were found, suggesting the presence of a novel receptor-independent mechanism in skeletal muscle. Preliminary docking studies revealed a potential binding capability of JMV2894 on metalloproteases involved in extracellular matrix remodeling and cytokine production, such as ADAMTS-5 and MMP-9, overactivated in DMD.DiscussionOur results support the interest of GHSs as modulators of pathology progression in mdx mice, disclosing a direct anti-fibrotic action that may prove beneficial to contrast pathological remodeling

    Pericytes in development and pathology of skeletal muscle

    No full text
    Increasing attention is currently devoted to the multiple roles that pericytes (also defined as mural, Rouget, or perivascular cells) may play during angiogenesis, vascular homeostasis, and pathology. Many recent excellent reviews thoroughly address these topics (see below); hence, we will not discuss them in detail here. However, not much is known about origin, heterogeneity, gene expression, and developmental potential of pericytes during fetal and postnatal development. This is likely because of the paucity of markers expressed by pericytes and the absence of truly unique ones. Thus, in vivo identification and ex perspective isolation are challenging and explain the relative little data available in comparison with neighbor but far more characterized cells such as the endothelium. Despite this preliminary knowledge, we will propose that contribution to growing mesoderm tissues may be an important role for pericytes. Thus, their ability to contribute to tissue regeneration may be a consequence of their role in tissue growth. However, in a severely damaged or diseased tissue, acute or chronic inflammation likely results in the production of signaling molecules that are different from those present in developing tissues, thus explaining why pericytes are easily diverted from a regenerative to a fibrotic fate.</jats:p

    “The Social Network” and Muscular Dystrophies: The Lesson Learnt about the Niche Environment as a Target for Therapeutic Strategies

    No full text
    The muscle stem cells niche is essential in neuromuscular disorders. Muscle injury and myofiber death are the main triggers of muscle regeneration via satellite cell activation. However, in degenerative diseases such as muscular dystrophy, regeneration still keep elusive. In these pathologies, stem cell loss occurs over time, and missing signals limiting damaged tissue from activating the regenerative process can be envisaged. It is unclear what comes first: the lack of regeneration due to satellite cell defects, their pool exhaustion for degeneration/regeneration cycles, or the inhibitory mechanisms caused by muscle damage and fibrosis mediators. Herein, Duchenne muscular dystrophy has been taken as a paradigm, as several drugs have been tested at the preclinical and clinical levels, targeting secondary events in the complex pathogenesis derived from lack of dystrophin. We focused on the crucial roles that pro-inflammatory and pro-fibrotic cytokines play in triggering muscle necrosis after damage and stimulating satellite cell activation and self-renewal, along with growth and mechanical factors. These processes contribute to regeneration and niche maintenance. We review the main effects of drugs on regeneration biomarkers to assess whether targeting pathogenic events can help to protect niche homeostasis and enhance regeneration efficiency other than protecting newly formed fibers from further damage

    La negoziazione nei processi formativi: il senso e le caratteristiche

    Get PDF
    <p>Mice are often used as animal models of various human neuromuscular diseases, and analysis of these models often requires detailed gait analysis. However, little is known of the dynamics of the mouse musculoskeletal system during locomotion. In this study, we used computer optimization procedures to create a simulation of trotting in a mouse, using a previously developed mouse hindlimb musculoskeletal model in conjunction with new experimental data, allowing muscle forces, activation patterns, and levels of mechanical work to be estimated. Analyzing musculotendon unit (MTU) mechanical work throughout the stride allowed a deeper understanding of their respective functions, with the rectus femoris MTU dominating the generation of positive and negative mechanical work during the swing and stance phases. This analysis also tested previous functional inferences of the mouse hindlimb made from anatomical data alone, such as the existence of a proximo-distal gradient of muscle function, thought to reflect adaptations for energy-efficient locomotion. The results do not strongly support the presence of this gradient within the mouse musculoskeletal system, particularly given relatively high negative net work output from the ankle plantarflexor MTUs, although more detailed simulations could test this further. This modeling analysis lays a foundation for future studies of the control of vertebrate movement through the development of neuromechanical simulations.</p

    Video_2_A Dynamic Simulation of Musculoskeletal Function in the Mouse Hindlimb During Trotting Locomotion.AVI

    No full text
    <p>Mice are often used as animal models of various human neuromuscular diseases, and analysis of these models often requires detailed gait analysis. However, little is known of the dynamics of the mouse musculoskeletal system during locomotion. In this study, we used computer optimization procedures to create a simulation of trotting in a mouse, using a previously developed mouse hindlimb musculoskeletal model in conjunction with new experimental data, allowing muscle forces, activation patterns, and levels of mechanical work to be estimated. Analyzing musculotendon unit (MTU) mechanical work throughout the stride allowed a deeper understanding of their respective functions, with the rectus femoris MTU dominating the generation of positive and negative mechanical work during the swing and stance phases. This analysis also tested previous functional inferences of the mouse hindlimb made from anatomical data alone, such as the existence of a proximo-distal gradient of muscle function, thought to reflect adaptations for energy-efficient locomotion. The results do not strongly support the presence of this gradient within the mouse musculoskeletal system, particularly given relatively high negative net work output from the ankle plantarflexor MTUs, although more detailed simulations could test this further. This modeling analysis lays a foundation for future studies of the control of vertebrate movement through the development of neuromechanical simulations.</p

    Image_1_A Dynamic Simulation of Musculoskeletal Function in the Mouse Hindlimb During Trotting Locomotion.TIF

    No full text
    <p>Mice are often used as animal models of various human neuromuscular diseases, and analysis of these models often requires detailed gait analysis. However, little is known of the dynamics of the mouse musculoskeletal system during locomotion. In this study, we used computer optimization procedures to create a simulation of trotting in a mouse, using a previously developed mouse hindlimb musculoskeletal model in conjunction with new experimental data, allowing muscle forces, activation patterns, and levels of mechanical work to be estimated. Analyzing musculotendon unit (MTU) mechanical work throughout the stride allowed a deeper understanding of their respective functions, with the rectus femoris MTU dominating the generation of positive and negative mechanical work during the swing and stance phases. This analysis also tested previous functional inferences of the mouse hindlimb made from anatomical data alone, such as the existence of a proximo-distal gradient of muscle function, thought to reflect adaptations for energy-efficient locomotion. The results do not strongly support the presence of this gradient within the mouse musculoskeletal system, particularly given relatively high negative net work output from the ankle plantarflexor MTUs, although more detailed simulations could test this further. This modeling analysis lays a foundation for future studies of the control of vertebrate movement through the development of neuromechanical simulations.</p

    Image_3_A Dynamic Simulation of Musculoskeletal Function in the Mouse Hindlimb During Trotting Locomotion.TIF

    No full text
    <p>Mice are often used as animal models of various human neuromuscular diseases, and analysis of these models often requires detailed gait analysis. However, little is known of the dynamics of the mouse musculoskeletal system during locomotion. In this study, we used computer optimization procedures to create a simulation of trotting in a mouse, using a previously developed mouse hindlimb musculoskeletal model in conjunction with new experimental data, allowing muscle forces, activation patterns, and levels of mechanical work to be estimated. Analyzing musculotendon unit (MTU) mechanical work throughout the stride allowed a deeper understanding of their respective functions, with the rectus femoris MTU dominating the generation of positive and negative mechanical work during the swing and stance phases. This analysis also tested previous functional inferences of the mouse hindlimb made from anatomical data alone, such as the existence of a proximo-distal gradient of muscle function, thought to reflect adaptations for energy-efficient locomotion. The results do not strongly support the presence of this gradient within the mouse musculoskeletal system, particularly given relatively high negative net work output from the ankle plantarflexor MTUs, although more detailed simulations could test this further. This modeling analysis lays a foundation for future studies of the control of vertebrate movement through the development of neuromechanical simulations.</p
    corecore