20 research outputs found

    Attributional perceptions of dating outcomes

    Get PDF
    Attributional responses made by undergraduate college students to interpersonal relationship outcomes were investigated to determine if the actor-observer effect exists in a similar manner for successful and unsuccessful dating situations, or if the effect is mediated by an egoserving bias tendency. Participants rated the influence of the Weinerian Factors of ability, effort, luck and task difficulty on successful and unsuccessful dating outcomes in terms of Self, an Other Male, or an Other Female. Participants attributed a significantly greater amount of internal responsibility to the others as compared to self for unsuccessful dating outcomes but not for successful outcomes. Additionally, participants, when responding to Self outcomes, were shown to take more responsibility for successful situations as compared to unsuccessful situations. This general pattern was extended to Other Female, but not to Other Male

    Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer

    Get PDF
    Pancreatic ductal adenocarcinoma is a lethal cancer with fewer than 7% of patients surviving past 5 years. T-cell immunity has been linked to the exceptional outcome of the few long-term survivors1,2, yet the relevant antigens remain unknown. Here we use genetic, immunohistochemical and transcriptional immunoprofiling, computational biophysics, and functional assays to identify T-cell antigens in long-term survivors of pancreatic cancer. Using whole-exome sequencing and in silico neoantigen prediction, we found that tumours with both the highest neoantigen number and the most abundant CD8+ T-cell infiltrates, but neither alone, stratified patients with the longest survival. Investigating the specific neoantigen qualities promoting T-cell activation in long-term survivors, we discovered that these individuals were enriched in neoantigen qualities defined by a fitness model, and neoantigens in the tumour antigen MUC16 (also known as CA125). A neoantigen quality fitness model conferring greater immunogenicity to neoantigens with differential presentation and homology to infectious disease-derived peptides identified long-term survivors in two independent datasets, whereas a neoantigen quantity model ascribing greater immunogenicity to increasing neoantigen number alone did not. We detected intratumoural and lasting circulating T-cell reactivity to both high-quality and MUC16 neoantigens in long-term survivors of pancreatic cancer, including clones with specificity to both high-quality neoantigens and predicted cross-reactive microbial epitopes, consistent with neoantigen molecular mimicry. Notably, we observed selective loss of high-quality and MUC16 neoantigenic clones on metastatic progression, suggesting neoantigen immunoediting. Our results identify neoantigens with unique qualities as T-cell targets in pancreatic ductal adenocarcinoma. More broadly, we identify neoantigen quality as a biomarker for immunogenic tumours that may guide the application of immunotherapies

    2015 Research & Innovation Day Program

    Get PDF
    A one day showcase of applied research, social innovation, scholarship projects and activities.https://first.fanshawec.ca/cri_cripublications/1002/thumbnail.jp

    The significance of the complement system for the pathogenesis of age-related macular degeneration — current evidence and translation into clinical application

    Get PDF
    BACKGROUND: Dysregulation of the complement system has been shown to play a major role in the pathogenesis of age-related macular degeneration (AMD). METHODS: The current evidence from human studies derives from immunohistochemical and proteomic studies in donor eyes, genetic association studies, and studies of blood complement protein levels. These lines of evidence are corroborated by in vitro and animal studies. RESULTS: In AMD donor eyes, detection of complement proteins in drusen suggested local inflammatory processes involving the complement system. Moreover, higher levels of complement proteins in the Bruch's membrane/choroid complex could be detected in AMD donor eyes compared to controls. A large number of independent genetic studies have consistently confirmed the association of AMD with risk or protective variants in genes coding for complement proteins, including complement factor H (CFH), CFH-related proteins 1 and 3, factor B/C2, C3 and factor I. Another set of independent studies detected increased levels of complement activation products in plasma of AMD patients, suggesting that AMD may be a systemic disease and the macula a vulnerable anatomic site of minimal resistance to complement activation. Genotype-phenotype correlations, including the impact of genetic variants on disease progression, gene-environment and pharmacogenetic interactions, have been investigated. There is evidence that complement gene variants may be associated with the progression from early to late forms of AMD, whereas they do not appear to play a significant role when late atrophic AMD has already developed. There are indications for an interaction between genetic variants and supplementation and dietary factors. Also, there is some evidence that variants in the CFH gene influence treatment effects in patients with neovascular AMD. CONCLUSIONS: Such data suggest that the complement system may have a significant role for developing new prophylactic and therapeutic interventions in AMD. In fact, several compounds acting on the complement pathway are currently in clinical trials. Therapeutics that modulate the complement system need to balance inhibition with preservation of sufficient functional activity in order to maintain adequate immune responses and tissue homeostasis. Specifically, targeting the dysfunction appears more adequate than a global suppression of complement activation in chronic diseases such as AMD

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    A New Generalized Residual Multiple Model Adaptive Estimator of Parameters and States

    No full text
    This article develops a modification to the standard Multiple Model Adaptive Estimator (MMAE) which allows the use of a new “generalized residual” in the hypothesis conditional probability calculation. The generalized residual is a linear combination of the traditional Kalman filter residual and the “post-fit” Kalman filter residual which is calculated after measurement incorporation. This new modified MMAE is termed a Generalized Residual Multiple Model Adaptive Estimator (GRMMAE). A derivation is provided for the hypothesis conditional probability formula which the GRMMAE uses to calculate probabilities that each elemental filter contains the correct parameter value.Abstract excerpt © Elsevie
    corecore