79 research outputs found

    The potential role of creatine in vascular health

    Get PDF
    Creatine is an organic compound, consumed exogenously in the diet and synthesized endogenously via an intricate inter-organ process. Functioning in conjunction with creatine kinase, creatine has long been known for its pivotal role in cellular energy provision and energy shuttling. In addition to the abundance of evidence supporting the ergogenic benefits of creatine supplementation, recent evidence suggests a far broader application for creatine within various myopathies, neurodegenerative diseases, and other pathologies. Furthermore, creatine has been found to exhibit non-energy related properties, contributing as a possible direct and in-direct antioxidant and eliciting anti-inflammatory effects. In spite of the new clinical success of supplemental creatine, there is little scientific insight into the potential effects of creatine on cardiovascular disease (CVD), the leading cause of mortality. Taking into consideration the non-energy related actions of creatine, highlighted in this review, it can be speculated that creatine supplementation may serve as an adjuvant therapy for the management of vascular health in at-risk populations. This review, therefore, not only aims to summarize the current literature surrounding creatine and vascular health, but to also shed light onto the potential mechanisms in which creatine may be able to serve as a beneficial supplement capable of imparting vascular-protective properties and promoting vascular health

    Pre-sleep protein supplementation after an acute bout of evening resistance exercise does not improve next day performance or recovery in resistance trained men

    Get PDF
    BACKGROUND: To evaluate the effect of pre-sleep protein supplementation after an acute bout of evening resistance training on next day performance and recovery the following day in physically active men. METHODS: Eighteen resistance trained men performed a single bout of resistance exercise then received either a pre-sleep protein (PRO) supplement containing 40 g of casein protein (PRO; n = 10; mean ± SD; age = 24 ± 4 yrs; height = 1.81 ± 0.08 m; weight = 84.9 ± 9.5 kg) or a non-caloric, flavor matched placebo (PLA; n = 8; age = 28 ± 10 yrs; height = 1.81 ± 0.07 m; weight = 86.7 ± 11.0 kg) 30 min before sleep (1 h after a standard recovery drink). Blood samples were obtained pre-exercise and the following morning (+12-h) to measure creatine kinase and C-reactive protein. Visual analog scales were utilized to assess perceived pain, hunger, and recovery. One-repetition maximum (1RM) tests for barbell bench press and squat were performed pre-exercise and the following morning (+12-h). Statistical analysis was performed using SPSS (V.23) and p ≤ 0.05 was considered statistically significant. RESULTS: There were no significant differences between the groups in next morning performance or muscle damage biomarkers. However, pre-sleep PRO resulted in a lower perception of hunger that approached significance the following morning when compared to PLA (PRO:43.6 ± 31.2, PLA: 69.4 ± 2.22; 95% C.I. = −53.6, 2.0; p = 0.07; d = 0.95). CONCLUSIONS: Following an evening bout of exercise, pre-sleep PRO did not further improve next morning muscle damage biomarkers or maximal strength performance in resistance trained men compared to a non-caloric PLA. However, there may be implications for lower perceived hunger the next morning with pre-sleep PRO consumption compared to PLA

    Protein-pacing caloric-restriction enhances body composition similarly in obese men and women during weight loss and sustains efficacy during long-term weight maintenance

    Get PDF
    Short-Term protein-pacing (P; ~6 meals/day, >30% protein/day) and caloric restriction (CR, ~25% energy deficit) improves total (TBF), abdominal (ABF) and visceral (VAT) fat loss, energy expenditure, and biomarkers compared to heart healthy (HH) recommendations (3 meals/day, 15% protein/day) in obese adults. Less is known whether obese men and women respond similarly to P-CR during weight loss (WL) and whether a modified P-CR (mP-CR) is more efficacious than a HH diet during long-term (52 week) weight maintenance (WM). The purposes of this study were to evaluate the efficacy of: (1) P-CR on TBF, ABF, resting metabolic rate (RMR), and biomarkers between obese men and women during WL (weeks 0–12); and (2) mP-CR compared to a HH diet during WM (weeks 13–64). During WL, men (n = 21) and women (n = 19) were assessed for TBF, ABF, VAT, RMR, and biomarkers at weeks 0 (pre) and 12 (post). Men and women had similar reductions (p < 0.01) in weight (10%), TBF (19%), ABF (25%), VAT (33%), glucose (7%–12%), insulin (40%), leptin (>50%) and increase in % lean body mass (9%). RMR (kcals/kg bodyweight) was unchanged and respiratory quotient decreased 9%. Twenty-four subjects (mP-CR, n = 10; HH, n = 14) completed WM. mP-CR regained significantly less body weight (6%), TBF (12%), and ABF (17%) compared to HH (p < 0.05). Our results demonstrate P-CR enhances weight loss, body composition and biomarkers, and maintains these changes for 52-weeks compared to a traditional HH diet

    Resistant starch and protein intake enhances fat oxidation and feelings of fullness in lean and overweight/obese women

    Get PDF
    BACKGROUND: Diets high in either resistant starch or protein have been shown to aid in weight management. We examined the effects of meals high in non-resistant or resistant starch with and without elevated protein intake on substrate utilization, energy expenditure, and satiety in lean and overweight/obese women. METHODS: Women of varying levels of adiposity consumed one of four pancake test meals in a single-blind, randomized crossover design: 1) waxy maize (control) starch (WMS); 2) waxy maize starch and whey protein (WMS+WP); 3) resistant starch (RS); or 4) RS and whey protein (RS+WP). RESULTS: Total post-prandial energy expenditure did not differ following any of the four test meals (WMS = 197.9 ± 8.9; WMS+WP = 188 ± 8.1; RS = 191.9 ± 8.9; RS+WP = 195.8 ± 8.7, kcals/180 min), although the combination of RS+WP, but not either intervention alone, significantly increased (P <0.01) fat oxidation (WMS = 89.5 ± 5.4; WMS+WP = 84.5 ± 7.2; RS = 97.4 ± 5.4; RS+WP = 107.8 ± 5.4, kcals/180 min). Measures of fullness increased (125 % vs. 45 %) and hunger decreased (55 % vs. 16 %) following WP supplemented versus non-whey conditions (WMS+WP, RS+WP vs. WMS, RS), whereas circulating hunger and satiety factors were not different among any of the test meals. However, peptide YY (PYY) was significantly elevated at 180 min following RS+WP meal. CONCLUSIONS: The combined consumption of dietary resistant starch and protein increases fat oxidation, PYY, and enhances feelings of satiety and fullness to levels that may be clinically relevant if maintained under chronic conditions. This trial was registered at clinicaltrials.gov as NCT02418429

    Effects of Dietary Protein on Body Composition in Exercising Individuals

    Get PDF
    Protein is an important component of a healthy diet and appears to be integral to enhancing training adaptations in exercising individuals. The purpose of this narrative review is to provide an evidence-based assessment of the current literature examining increases in dietary protein intake above the recommended dietary allowance (RDA: 0.8 g/kg/d) in conjunction with chronic exercise on body composition (i.e., muscle, fat and bone). We also highlight acute and chronic pre-sleep protein studies as well as the influence of exercise timing on body composition. Overall, a high-protein diet appears to increase muscle accretion and fat loss and may have beneficial effects on bone when combined with exercise. Pre-sleep protein is a viable strategy to help achieve total daily protein goals. Importantly, there appears to be no deleterious effects from a high-protein diet on muscle, fat or bone in exercising individuals
    • …
    corecore