361 research outputs found

    The promise of recombinant BMP ligands and other approaches targeting BMPR-II in the treatment of pulmonary arterial hypertension.

    Get PDF
    Human genetic discoveries offer a powerful method to implicate pathways of major importance to disease pathobiology and hence provide targets for pharmacological intervention. The genetics of pulmonary arterial hypertension (PAH) strongly implicates loss-of-function of the bone morphogenetic protein type II receptor (BMPR-II) signalling pathway and moreover implicates the endothelial cell as a central cell type involved in disease initiation. We and others have described several approaches to restore BMPR-II function in genetic and non-genetic forms of PAH. Of these, supplementation of endothelial BMP9/10 signalling with exogenous recombinant ligand has been shown to hold considerable promise as a novel large molecule biopharmaceutical therapy. Here, we describe the mechanism of action and discuss potential additional effects of BMP ligand therapy

    Impaired natural killer cell phenotype and function in idiopathic and heritable pulmonary arterial hypertension

    Get PDF
    BACKGROUND: Beyond their role as innate immune effectors, natural killer (NK) cells are emerging as important regulators of angiogenesis and vascular remodeling. Pulmonary arterial hypertension (PAH) is characterized by severe pulmonary vascular remodeling and has long been associated with immune dysfunction. Despite this association, a role for NK cells in disease pathology has not yet been described. METHODS AND RESULTS: Analysis of whole blood lymphocytes and isolated NK cells from PAH patients revealed an expansion of the functionally defective CD56(-)/CD16(+) NK subset that was not observed in patients with chronic thromboembolic pulmonary hypertension. NK cells from PAH patients also displayed decreased levels of the activating receptor NKp46 and the killer immunoglobulin-like receptors 2DL1/S1 and 3DL1, reduced secretion of the cytokine macrophage inflammatory protein-1β, and a significant impairment in cytolytic function associated with decreased killer immunoglobulin-like receptor 3DL1 expression. Genotyping patients (n=222) and controls (n=191) for killer immunoglobulin-like receptor gene polymorphisms did not explain these observations. Rather, we show that NK cells from PAH patients exhibit increased responsiveness to transforming growth factor-β, which specifically downregulates disease-associated killer immunoglobulin-like receptors. NK cell number and cytotoxicity were similarly decreased in the monocrotaline rat and chronic hypoxia mouse models of PAH, accompanied by reduced production of interferon-γ in NK cells from hypoxic mice. NK cells from PAH patients also produced elevated quantities of matrix metalloproteinase 9, consistent with a capacity to influence vascular remodeling. CONCLUSIONS: Our work is the first to identify an impairment of NK cells in PAH and suggests a novel and substantive role for innate immunity in the pathobiology of this disease

    Generation and Culture of Blood Outgrowth Endothelial Cells from Human Peripheral Blood.

    Get PDF
    Historically, the limited availability of primary endothelial cells from patients with vascular disorders has hindered the study of the molecular mechanisms underlying endothelial dysfunction in these individuals. However, the recent identification of blood outgrowth endothelial cells (BOECs), generated from circulating endothelial progenitors in adult peripheral blood, may circumvent this limitation by offering an endothelial-like, primary cell surrogate for patient-derived endothelial cells. Beyond their value to understanding endothelial biology and disease modeling, BOECs have potential uses in endothelial cell transplantation therapies. They are also a suitable cellular substrate for the generation of induced pluripotent stem cells (iPSCs) via nuclear reprogramming, offering a number of advantages over other cell types. We describe a method for the reliable generation, culture and characterization of BOECs from adult peripheral blood for use in these and other applications. This approach (i) allows for the generation of patient-specific endothelial cells from a relatively small volume of adult peripheral blood and (ii) produces cells that are highly similar to primary endothelial cells in morphology, cell signaling and gene expression

    Transcript analysis reveals a specific HOX signature associated with positional identity of human endothelial cells.

    Get PDF
    The endothelial cell has a remarkable ability for sub-specialisation, adapted to the needs of a variety of vascular beds. The role of developmental programming versus the tissue contextual environment for this specialization is not well understood. Here we describe a hierarchy of expression of HOX genes associated with endothelial cell origin and location. In initial microarray studies, differential gene expression was examined in two endothelial cell lines: blood derived outgrowth endothelial cells (BOECs) and pulmonary artery endothelial cells. This suggested shared and differential patterns of HOX gene expression between the two endothelial lines. For example, this included a cluster on chromosome 2 of HOXD1, HOXD3, HOXD4, HOXD8 and HOXD9 that was expressed at a higher level in BOECs. Quantative PCR confirmed the higher expression of these HOXs in BOECs, a pattern that was shared by a variety of microvascular endothelial cell lines. Subsequently, we analysed publically available microarrays from a variety of adult cell and tissue types using the whole "HOX transcriptome" of all 39 HOX genes. Using hierarchical clustering analysis the HOX transcriptome was able to discriminate endothelial cells from 61 diverse human cell lines of various origins. In a separate publically available microarray dataset of 53 human endothelial cell lines, the HOX transcriptome additionally organized endothelial cells related to their organ or tissue of origin. Human tissue staining for HOXD8 and HOXD9 confirmed endothelial expression and also supported increased microvascular expression of these HOXs. Together these observations suggest a significant involvement of HOX genes in endothelial cell positional identity

    Pharmacogenetic Testing for Clopidogrel Using the Rapid INFINITI Analyzer A Dose-Escalation Study

    Get PDF
    ObjectivesOur aim was to assess whether a higher clopidogrel maintenance dose has a greater antiplatelet effect in CYP2C19*2 allele carriers compared with noncarriers.BackgroundClopidogrel is a prodrug that is biotransformed by the cytochrome P450 enzymes CYP2C19, 2C9, and 3A4, 2B6, 1A2. The CYPC219*2 loss of function variant has been associated with a reduced antiplatelet response to clopidogrel and a 3-fold risk of stent thrombosis.MethodsForty patients on standard maintenance dosage clopidogrel (75 mg), for 9.4 ± 9.2 weeks, were enrolled into a dose escalation study. Platelet function was assessed at baseline and after 1 week of 150 mg once daily using the VerifyNow platelet function analyzer (Accumetrics Ltd., San Diego, California). Genomic DNA was hybridized to a BioFilmChip microarray on the INFINITI analyzer (AutoGenomics Inc., Carlsbad, California) and analyzed for the CYP19*2, *4, *17, and CYP2C9*2, *3 polymorphisms.ResultsPlatelet inhibition increased over 1 week, mean +8.6 ± 13.5% (p = 0.0003). Carriers of the CYP2C19*2 allele had significantly reduced platelet inhibition at baseline (median 18%, range 0% to 72%) compared with wildtype (wt) (median 59%, range 11% to 95%, p = 0.01) and at 1 week (p = 0.03). CYP2C19*2 allele carriers had an increase in platelet inhibition of (mean +9 ± 11%, p = 0.03) and reduction in platelet reactivity (mean −26 ± 38 platelet response unit, p = 0.04) with a higher dose. Together CYP2C19*2 and CYP2C9*3 loss of function carriers had a greater change in platelet inhibition with 150 mg daily than wt/wt (+10.9% vs. +0.7%, p = 0.04).ConclusionsIncreasing the dose of clopidogrel in patients with nonresponder polymorphisms can increase antiplatelet response. Personalizing clopidogrel dosing using pharmacogenomics may be an effective method of optimizing treatment
    corecore