12 research outputs found

    Cloning and characterization of the Schizosaccharomyces pombe homologs of the human protein Translin and the Translin-associated protein TRAX

    Get PDF
    Translin is a human octameric protein that specifically binds the single-stranded microsatellite repeats d(GT)(n) and the corresponding transcripts (GU)(n). It also binds, with lesser affinities, other single-stranded G-rich DNA and RNA sequences. TRAX is a human protein that bears a homology to Translin and interacts with it. Translin and TRAX have been proposed to be involved in DNA recombination, chromosomal translocation and mRNA transport and translation. Both proteins are highly conserved in eukaryotes, including the fission yeast Schizosaccharomyces pombe, which is amenable to genetic analysis. Here, we report the first study of the S.pombe Translin and TRAX homologs. We have deleted the genes encoding Translin and TRAX in S.pombe and found that the proliferation of the mutant cells was slightly stimulated, suggesting that these genes are not essential for the fission yeast. We have also shown that the S.pombe Translin and TRAX interact. Biochemical analysis of the S.pombe Translin, which was cloned and expressed in Escherichia coli, revealed that it is octameric and that it selectively binds d(GT)(n) and d(GTT)(n) microsatellite repeats. However, unlike the human protein, it has much higher affinities for the homologous RNA sequences (GU)(n) and (GUU)(n). These data suggest that the S.pombe Translin is primarily involved in functions related to RNA metabolism

    SIRT6 Promotes Hepatic Beta-Oxidation via Activation of PPARα

    Get PDF
    The pro-longevity enzyme SIRT6 regulates various metabolic pathways. Gene expression analyses in SIRT6 heterozygotic mice identify significant decreases in PPARα signaling, known to regulate multiple metabolic pathways. SIRT6 binds PPARα and its response element within promoter regions and activates gene transcription. Sirt6+/− results in significantly reduced PPARα-induced β-oxidation and its metabolites and reduced alanine and lactate levels, while inducing pyruvate oxidation. Reciprocally, starved SIRT6 transgenic mice show increased pyruvate, acetylcarnitine, and glycerol levels and significantly induce β-oxidation genes in a PPARα-dependent manner. Furthermore, SIRT6 mediates PPARα inhibition of SREBP-dependent cholesterol and triglyceride synthesis. Mechanistically, SIRT6 binds PPARα coactivator NCOA2 and decreases liver NCOA2 K780 acetylation, which stimulates its activation of PPARα in a SIRT6-dependent manner. These coordinated SIRT6 activities lead to regulation of whole-body respiratory exchange ratio and liver fat content, revealing the interactions whereby SIRT6 synchronizes various metabolic pathways, and suggest a mechanism by which SIRT6 maintains healthy liver

    Rapid and Sensitive Multiplex Assay for the Detection of B. anthracis Spores from Environmental Samples

    No full text
    Prompt and accurate detection of Bacillus anthracis spores is crucial in the event of intentional spore dissemination in order to reduce the number of expected casualties. Specific identification of these spores from environmental samples is both challenging and time-consuming. This is due to the high homology with other Bacillus species as well as the complex composition of environmental samples, which further impedes assay sensitivity. Previously, we showed that a short incubation of B.anthracis spores in a defined growth medium results in rapid germination, bacterial growth, and secretion of toxins, including protective antigen. In this work, we tested whether coupling the incubation process to a newly developed immune-assay will enable the detection of secreted toxins as markers for the presence of spores in environmental samples. The new immune assay is a flow cytometry-based multiplex that simultaneously detects a protective antigen, lethal factor, and edema factor. Our combined assay detects 1 × 103–1 × 104/mL spores after a 2 h incubation followed by the ~80 min immune-multiplex detection. Extending the incubation step to 5 h increased assay sensitivity to 1 × 102/mL spore. The protocol was validated in various environmental samples using attenuated or fully virulent B. anthracis spores. There was no substantial influence of contaminants derived from real environmental samples on the performance of the assay compared to clean samples, which allow the unequivocal detection of 3 × 103/mL and 3 × 102/mL spores following 2 and 5 hour’s incubation, respectively. Overall, we propose this method as a rapid, sensitive, and specific procedure for the identification of B. anthracis spores in environmental samples

    Inhibition Mechanism of Membrane Metalloprotease by an Exosite-Swiveling Conformational Antibody

    Get PDF
    SummaryMembrane type 1 metalloprotease (MT1-MMP) is a membrane-anchored, zinc-dependent protease. MT1-MMP is an important mediator of cell migration and invasion, and overexpression of this enzyme has been correlated with the malignancy of various tumor types. Therefore, modulators of MT1-MMP activity are proposed to possess therapeutic potential in numerous invasive diseases. Here we report the inhibition mode of MT1-MMP by LEM-2/15 antibody, which targets a surface epitope of MT1-MMP. Specifically, the crystal structures of Fab LEM-2/15 in complex with the MT1-MMP surface antigen suggest that conformational swiveling of the enzyme surface loop is required for effective binding and consequent inhibition of MT1-MMP activity on the cell membrane. This inhibition mechanism appears to be effective in controlling active MT1-MMP in endothelial cells and at the leading edge of migratory cancer cells

    An Improvement in Diagnostic Blood Culture Conditions Allows for the Rapid Detection and Isolation of the Slow Growing Pathogen Yersinia pestis

    No full text
    Plague, caused by the human pathogen Yersinia pestis, is a severe and rapidly progressing lethal disease that has caused millions of deaths globally throughout human history and still presents a significant public health concern, mainly in developing countries. Owing to the possibility of its malicious use as a bio-threat agent, Y. pestis is classified as a tier-1 select agent. The prompt administration of an effective antimicrobial therapy, essential for a favorable patient prognosis, requires early pathogen detection, identification and isolation. Although the disease rapidly progresses and the pathogen replicates at high rates within the host, Y. pestis exhibits a slow growth in vitro under routinely employed clinical culturing conditions, complicating the diagnosis and isolation. In the current study, the in vitro bacterial growth in blood cultures was accelerated by the addition of nutritional supplements. We report the ability of calcium (Ca+2)- and iron (Fe+2)-enriched aerobic blood culture media to expedite the growth of various virulent Y. pestis strains. Using a supplemented blood culture, a shortening of the doubling time from ~110 min to ~45 min could be achieved, resulting in increase of 5 order of magnitude in the bacterial loads within 24 h of incubation, consequently allowing the rapid detection and isolation of the slow growing Y. pestis bacteria. In addition, the aerobic and anaerobic blood culture bottles used in clinical set-up were compared for a Y. pestis culture in the presence of Ca+2 and Fe+2. The comparison established the superiority of the supplemented aerobic cultures for an early detection and achieved a significant increase in the yields of the pathogen. In line with the accelerated bacterial growth rates, the specific diagnostic markers F1 and LcrV (V) antigens could be directly detected significantly earlier. Downstream identification employing MALDI-TOF and immunofluorescence assays were performed directly from the inoculated supplemented blood culture, resulting in an increased sensitivity and without any detectable compromise of the accuracy of the antibiotic susceptibility testing (E-test), critical for subsequent successful therapeutic interventions
    corecore