1,238 research outputs found

    Coherent Optical Spectroscopy Of Molecules And Molecular Beams

    Get PDF
    This paper presents our recent work on coherent optical spectroscopy of molecules and molecular beams. The theory for these nonlinear optical effects is summarized and related to the measurements in the gas phase and in the condensed phase. Finally, we discuss the importance of these methods, which disentangle the inhomogeneous optical resonances, in understanding nonradiative and optical dephasing processes

    Spin-dependent transport in p+-CdBxF2-x - n-CdF2 planar structures

    Full text link
    The CV measurements and tunneling spectroscopy are used to study the ballistic transport of the spin-polarized holes by varying the value of the Rashba spin-orbit interaction (SOI) in the p-type quantum well prepared on the surface of the n-CdF2 bulk crystal. The findings of the hole conductance oscillations in the plane of the p-type quantum well that are due to the variations of the Rashba SOI are shown to be evidence of the spin transistor effect, with the amplitude of the oscillations close to e2/h.Comment: 5 pages, 6 figure

    The role of the ubiquitination-proteasome pathway in breast cancer: Applying drugs that affect the ubiquitin-proteasome pathway to the therapy of breast cancer

    Get PDF
    The ubiquitin-proteasome pathway is responsible for most eukaryotic intracellular protein degradation. This pathway has been validated as a target for antineoplastic therapy using both in vitro and preclinical models of human malignancies, and is influenced as part of the mechanism of action of certain chemotherapeutic agents. Drugs whose primary action involves modulation of ubiquitin-proteasome activity, most notably the proteasome inhibitor PS-341, are currently being evaluated in clinical trials, and have already been found to have significant antitumor efficacy. On the basis of the known mechanisms by which these agents work, and the available clinical data, they would seem to be well suited for the treatment of breast neoplasms. Such drugs, alone and especially in combination with current chemotherapeutics, may well represent important advances in the therapy of patients with breast cancer

    Radiationless Relaxation in "Large" Molecules: Experimental Evidence for Preparation of True Molecular Eigenstates and Born-Oppenheimer States by a Coherent Light Source

    Get PDF
    Photon absorption and emission by molecules that undergo radiationless transitions are examined using the single modes of lasers having well-defined coherence properties. Contrary to the usual beliefs, where it is assumed that the molecule is prepared in a Born-Oppenheimer singlet state and then "crosses-over" to other states (vibrationally "hot" singlets and/or triplets), it is shown experimentally that the true eigenstates of the molecule can be prepared, even in "large" molecules, if the laser correlation time is relatively long and the molecular relaxation is made slow. On the other hand, lasers with short (psec) correlation time have yielded effectively the singlet Born-Oppenheimer state, which has a much shorter lifetime than the true eigenstates. Effects of magnetic fields and temperature are also reported. The former changes the amount of mixing amongst the Born-Oppenheimer states. The latter, on the other hand, swings the molecule from being "small" (i.e., sparse vibronic structure with long lifetimes) to being "large" (i.e., dense statistical distribution of levels) since the relaxation between levels is very effective at high temperatures. Finally, the results of this work show that the words fluorescence and phosphorescence in their strict meaning are misleading if the true eigenstates, which may contain both singlet and triplet character, are prepared

    How to determine a quantum state by measurements: The Pauli problem for a particle with arbitrary potential

    Get PDF
    The problem of reconstructing a pure quantum state ¿¿> from measurable quantities is considered for a particle moving in a one-dimensional potential V(x). Suppose that the position probability distribution ¿¿(x,t)¿2 has been measured at time t, and let it have M nodes. It is shown that after measuring the time evolved distribution at a short-time interval ¿t later, ¿¿(x,t+¿t)¿2, the set of wave functions compatible with these distributions is given by a smooth manifold M in Hilbert space. The manifold M is isomorphic to an M-dimensional torus, TM. Finally, M additional expectation values of appropriately chosen nonlocal operators fix the quantum state uniquely. The method used here is the analog of an approach that has been applied successfully to the corresponding problem for a spin system

    Thermal diffusion of supersonic solitons in an anharmonic chain of atoms

    Full text link
    We study the non-equilibrium diffusion dynamics of supersonic lattice solitons in a classical chain of atoms with nearest-neighbor interactions coupled to a heat bath. As a specific example we choose an interaction with cubic anharmonicity. The coupling between the system and a thermal bath with a given temperature is made by adding noise, delta-correlated in time and space, and damping to the set of discrete equations of motion. Working in the continuum limit and changing to the sound velocity frame we derive a Korteweg-de Vries equation with noise and damping. We apply a collective coordinate approach which yields two stochastic ODEs which are solved approximately by a perturbation analysis. This finally yields analytical expressions for the variances of the soliton position and velocity. We perform Langevin dynamics simulations for the original discrete system which fully confirm the predictions of our analytical calculations, namely noise-induced superdiffusive behavior which scales with the temperature and depends strongly on the initial soliton velocity. A normal diffusion behavior is observed for very low-energy solitons where the noise-induced phonons also make a significant contribution to the soliton diffusion.Comment: Submitted to PRE. Changes made: New simulations with a different method of soliton detection. The results and conclusions are not different from previous version. New appendixes containing information about the system energy and soliton profile
    corecore