2,626 research outputs found

    Derived categories of Burniat surfaces and exceptional collections

    Full text link
    We construct an exceptional collection Υ\Upsilon of maximal possible length 6 on any of the Burniat surfaces with KX2=6K_X^2=6, a 4-dimensional family of surfaces of general type with pg=q=0p_g=q=0. We also calculate the DG algebra of endomorphisms of this collection and show that the subcategory generated by this collection is the same for all Burniat surfaces. The semiorthogonal complement A\mathcal A of Υ\Upsilon is an "almost phantom" category: it has trivial Hochschild homology, and K_0(\mathcal A)=\bZ_2^6.Comment: 15 pages, 1 figure; further remarks expande

    Fermionic construction of partition functions for two-matrix models and perturbative Schur function expansions

    Full text link
    A new representation of the 2N fold integrals appearing in various two-matrix models that admit reductions to integrals over their eigenvalues is given in terms of vacuum state expectation values of operator products formed from two-component free fermions. This is used to derive the perturbation series for these integrals under deformations induced by exponential weight factors in the measure, expressed as double and quadruple Schur function expansions, generalizing results obtained earlier for certain two-matrix models. Links with the coupled two-component KP hierarchy and the two-component Toda lattice hierarchy are also derived.Comment: Submitted to: "Random Matrices, Random Processes and Integrable Systems", Special Issue of J. Phys. A, based on the Centre de recherches mathematiques short program, Montreal, June 20-July 8, 200

    Bound, virtual and resonance SS-matrix poles from the Schr\"odinger equation

    Get PDF
    A general method, which we call the potential SS-matrix pole method, is developed for obtaining the SS-matrix pole parameters for bound, virtual and resonant states based on numerical solutions of the Schr\"odinger equation. This method is well-known for bound states. In this work we generalize it for resonant and virtual states, although the corresponding solutions increase exponentially when rr\to\infty. Concrete calculations are performed for the 1+1^+ ground and the 0+0^+ first excited states of 14N^{14}\rm{N}, the resonance 15F^{15}\rm{F} states (1/2+1/2^+, 5/2+5/2^+), low-lying states of 11Be^{11}\rm{Be} and 11N^{11}\rm{N}, and the subthreshold resonances in the proton-proton system. We also demonstrate that in the case the broad resonances their energy and width can be found from the fitting of the experimental phase shifts using the analytical expression for the elastic scattering SS-matrix. We compare the SS-matrix pole and the RR-matrix for broad s1/2s_{1/2} resonance in 15F{}^{15}{\rm F}Comment: 14 pages, 5 figures (figures 3 and 4 consist of two figures each) and 4 table

    Geometric Phantom Categories

    Get PDF
    In this paper we give a construction of phantom categories, i.e. admissible triangulated subcategories in bounded derived categories of coherent sheaves on smooth projective varieties that have trivial Hochschild homology and trivial Grothendieck group. We also prove that these phantom categories are phantoms in a stronger sense, namely, they have trivial K-motives and, hence, all their higher K-groups are trivial too.Comment: LaTeX, 18 page
    corecore