1,058 research outputs found
Connecting up strategy: are senior strategy directors a missing link?
With companies being exhorted to become more strategically agile and internally connected, this article examines the role of the Senior Strategy Director, the executive tasked specifically with internal strategy. In particular, it explores what they do, what specific capabilities they deploy to enable effective contribution to the company, and in what ways they facilitate the connectedness of strategy. An analysis of multiple interviews over time with Senior Strategy Directors of large companies shows the vital and challenging role these executives play in both shaping, connecting up, and executing strategy. This article identifies the particular capabilities necessary for Senior Strategy Directors to perform their role and shows how it all depends upon their skilful deployment. These findings have significant implications for understanding unfolding micro-processes of strategy in large organizations, for assumptions about the skills and capabilities necessary to be an effective Senior Strategy Director, and for business schools in terms of the content and style of strategy courses they provide
Black carbon aerosols and the third polar ice cap
Recent thinning of glaciers over the Himalayas (sometimes referred to as the third polar region) have raised concern on future water supplies since these glaciers supply water to large river systems that support millions of people inhabiting the surrounding 5 areas. Black carbon (BC) aerosols, released from incomplete combustion, have been increasingly implicated as causing large changes in the hydrology and radiative forcing over Asia and its deposition on snow is thought to increase snow melt. In India BC from biofuel combustion is highly prevalent and compared to other regions, BC aerosol amounts are high. Here, we quantify the impact of BC aerosols on snow cover and pre10 cipitation from 1990 to 2010 over the Indian subcontinental region using two different BC emission inventories. New estimates indicate that Indian BC from coal and biofuel are large and transport is expected to expand rapidly in coming years. We show that over the Himalayas, from 1990 to 2000, simulated snow/ice cover decreases by ~0.9% due to aerosols. The contribution of the enhanced Indian BC to this decline is ~30%, 15 similar to that simulated for 2000 to 2010. Spatial patterns of modeled changes in snow cover and precipitation are similar to observations (from 1990 to 2000), and are mainly obtained with the newer BC estimates
Defect Engineering: Graphene Gets Designer Defects
An extended one-dimensional defect that has the potential to act as a
conducting wire has been embedded in another perfect graphene sheet.Comment: 2 pages, 1 figur
Resonant transmission through finite-sized carbon nanotubes
We have investigated theoretically the conductance through finite-sized carbon nanotubes coupled to featureless leads in the context of standard tight-binding models. Conduction takes place via resonant tunneling, and the resultant spectrum of peaks may be understood in terms of the band structure of the nanotubes. Specific nanotubes display both on- and off-resonance behavior as a function of nanotube length depending upon whether or not the bands cross at a nonzero k value. We have also investigated the approach to the infinite limit in detail, and, in general, find that the finite-size effects can persist out to hundreds of nanometers. Since the manipulation of nanotubes into devices is likely to induce defects, we have investigated their effects on the conduction. The effects of bending and two broad classes of defects, i.e., defect in the absence and/or presence of addimers, were considered. In general, the presence of defects leads both to a reduction and shifting of the resonant peaks at the Fermi level. However, in the infinite limit, low concentrations of defects have only a relatively modest effect on the transport properties. Finally, we have investigated the effects of an externally imposed magnetic field oriented perpendicular to the nanotube axis. The magnetic field shifts the levels, thereby turning on- and off-resonant devices into each other. All of the effects discussed here are testable experimentally.published_or_final_versio
Recommended from our members
Managing digital coordination of design: emerging hybrid practices in an institutionalized project setting
What happens when digital coordination practices are introduced into the institutionalized setting of an engineering project? This question is addressed through an interpretive study that examines how a shared digital model becomes used in the late design stages of a major station refurbishment project. The paper contributes by mobilizing the idea of ‘hybrid practices’ to understand the diverse patterns of activity that emerge to manage digital coordination of design. It articulates how engineering and architecture professions develop different relationships with the shared model; the design team negotiates paper-based practices across organizational boundaries; and diverse practitioners probe the potential and limitations of the digital infrastructure. While different software packages and tools have become linked together into an integrated digital infrastructure, these emerging hybrid practices contrast with the interactions anticipated in practice and policy guidance and presenting new opportunities and challenges for managing project delivery. The study has implications for researchers working in the growing field of empirical work on engineering project organizations as it shows the importance of considering, and suggests new ways to theorise, the introduction of digital coordination practices into these institutionalized settings
Towards a Conceptualization of Sociomaterial Entanglement
In knowledge representation, socio-technical systems can be modeled
as multiagent systems in which the local knowledge of each individual agent can
be seen as a context. In this paper we propose formal ontologies as a means to
describe the assumptions driving the construction of contexts as local theories and
to enable interoperability among them. In particular, we present two alternative
conceptualizations of the notion of sociomateriality (and entanglement), which
is central in the recent debates on socio-technical systems in the social sciences,
namely critical and agential realism.
We thus start by providing a model of entanglement according to the critical realist
view, representing it as a property of objects that are essentially dependent on
different modules of an already given ontology. We refine then our treatment by
proposing a taxonomy of sociomaterial entanglements that distinguishes between
ontological and epistemological entanglement. In the final section, we discuss the
second perspective, which is more challenging form the point of view of knowledge
representation, and we show that the very distinction of information into
modules can be at least in principle built out of the assumption of an entangled
reality
Recommended from our members
First-principles thermoelasticity of transition metals at high pressure I. Tantalum prototype in the quasi-harmonic limit
The thermoelastic properties of bcc tantalum have been investigated over a broad range of pressures (up to 10 Mbar) and temperatures (up to 26,000 K) using a new first-principles approach that accurately accounts for cold, electron-thermal, and ion-thermal contributions in materials where anharmonic effects are small. Specifically, we have combined ab initio full-potential linear-muffin-tin-orbital (FP-LMTO) electronic-structure calculations for the cold and electron-thermal contributions to the elastic moduli with phonon contributions for the ion-thermal part calculated using model generalized pseudopotential theory (MGPT). For the latter, a summation of terms over the Brillouin zone is performed within the quasi-harmonic approximation, where each term is composed of a strain derivative of the phonon frequency at a particular k point. At ambient pressure, the resulting temperature dependence of the Ta elastic moduli is in excellent agreement with ultrasonic measurements. The experimentally observed anomalous behavior of C{sub 44} at low temperatures is shown to originate from the electron-thermal contribution. At higher temperatures, the main contribution to the temperature dependence of the elastic moduli comes from thermal expansion, but inclusion of the electron- and ion-thermal contributions is essential to obtain quantitative agreement with experiment. In addition, the pressure dependence of the moduli at ambient temperature compares well with recent diamond-anvil cell measurements to 1.05 Mbar. Moreover, the calculated longitudinal and bulk sound velocities in polycrystalline Ta at higher pressure and temperature in the vicinity of shock melting ({approx} 3 Mbar) agree well with data obtained from shock experiments. However, at high temperatures along the melt curve above 1 Mbar, the B{prime} shear modulus becomes negative indicating the onset of unexpectedly strong anharmonic effects. Finally, the assumed temperature dependence of the Steinberg-Guinan strength model obtained from scaling with the bulk shear modulus is examined at ambient pressure
Interference effects in electronic transport through metallic single-wall carbon nanotubes
In a recent paper Liang {\it et al.} [Nature {\bf 411}, 665 (2001)] showed
experimentally, that metallic nanotubes, strongly coupled to external
electrodes, may act as coherent molecular waveguides for electronic transport.
The experimental results were supported by theoretical analysis based on the
scattering matrix approach. In this paper we analyze theoretically this problem
using a real-space approach, which makes it possible to control quality of
interface contacts. Electronic structure of the nanotube is taken into account
within the tight-binding model. External electrodes and the central part
(sample) are assumed to be made of carbon nanotubes, while the contacts between
electrodes and the sample are modeled by appropriate on-site (diagonal) and
hopping (off-diagonal) parameters. Conductance is calculated by the Green
function technique combined with the Landauer formalism. In the plots
displaying conductance {\it vs.} bias and gate voltages, we have found typical
diamond structure patterns, similar to those observed experimentally. In
certain cases, however, we have found new features in the patterns, like a
double-diamond sub-structure.Comment: 15 pages, 4 figures. To apear in Phys. Rev.
Recommended from our members
A Steinberg-Guinan model for High-Pressure Carbon, Diamond Phase
Since the carbon, diamond phase has such a high yield strength, dynamic simulations must account for strength even for strong shock waves ({approx} 3 Mbar). We have determined an initial parametrization of two strength models: Steinberg-Guinan (SG) and a modified or improved SG, that captures the high pressure dependence of the calculated shear modulus up to 10 Mbar. The models are based upon available experimental data and on calculated elastic moduli using robust density functional theory. Additionally, we have evaluated these models using hydrodynamic simulations of planar shocks experiments
- …