33 research outputs found

    As implicações do consumo na preservação do ambiente

    Get PDF
    A sociedade pós-moderna é tendencialmente a sociedade do desperdício, em que coexistem a mais atroz miséria e a opulência mais ostensiva. A sociedade pós-moderna é marcada por profundas assimetrias sociais em que se contrapõem pungentes quadros de escassez a deprimentes situações de abundância, dominadas pelo supérfluo e pelo sumptuário. A sociedade pós-moderna aparta-se dos modelos de equilíbrio e dos quadros de racionalidade que deveriam constituir as coordenadas de um desenvolvimento económico e social sustentado. A concentração da riqueza em um escasso número amplia qual mancha ou nódoa a franja dos excluídos. Os níveis de consumo disparam em estratos determinados e comprimem-se nos mais desfavorecidos. O fenómeno é, porém, preocupante porque tais índices são dominados por estranhos factores de que as estratégias mercadológicas se socorrem no afã de se criarem necessidades artificiais e de se avolumar o desperdício. O consumo de produtos, em particular, tem sido dominado pela reprodução insaciável do número de produtos à disposição do público

    Photosynthetic responses to temperature in tropical lotic macroalgae

    No full text
    A comparative analysis of the photosynthetic responses to temperature (10-30°C) was carried out under short-term laboratory conditions by chlorophyll fluorescence and oxygen (O2) evolution. Ten lotic macroalgal species from southeastern Brazil (20°11-20°48′S, 49°18-49°41′W) were tested, including Bacillariophyta, Chlorophyta, Cyanophyta, Rhodophyta and Xanthophyta. Temperature had significant effects on electron transport rate (ETR) only for three species (Terpsinoe musica, Bacillariophyta; Cladophora glomerata, Chlorophyta; and C. coeruleus, Rhodophyta), with highest values at 25-30°C, whereas the remaining species had no significant responses. It also had similar effects on non-photochemical quenching and ETR. Differences in net photosynthesis/dark respiration ratios at distinct temperatures were found, with an increasing trend of respiration with higher temperatures. This implies in a decreasing balance between net primary production and temperature, representing more critical conditions toward higher temperatures for most species. In contrast, high net photosynthesis and photosynthesis/dark respiration ratios at high and wide ranges of temperature were found in three species of green algae, suggesting that these algae can be important primary producers in lotic ecosystems, particularly in tropical regions. Optimal photosynthetic rates were observed under similar environmental temperatures for five species (two rhodophytes, two chlorophytes and one diatom) considering both techniques, suggesting acclimation to their respective ambient temperatures. C. coeruleus was the only species with peaks of ETR and O 2 evolution under similar field-measured temperatures. All species kept values of ETR and net photosynthesis close to the optimum under a broad range of temperatures. Increased non-photochemical quenching, as a measure of thermal dissipation of excess energy, toward higher temperatures was observed in some species, as well as positive correlation of non-photochemical quenching with ETR, and were interpreted as two mechanisms of adaptation of the photosynthetic apparatus to temperature changes. Different optimal temperatures were found for individual species by each technique, generally under lower temperatures by O2 evolution, indicating dependence on distinct factors: increases in temperature generally induced higher ETR due to increased enzymatic activity, whereas increments of enzymatic activity were compensated by increased respiration and photorespiration leading to decreases in net photosynthesis

    Microhabitat and plant structure of Batrachospermum (Batrachospermales, Rhodophyta) populations in four streams of São Paulo State, southeastern Brazil

    No full text
    Microhabitat and plant structure of seven Batrachospermum populations (four of Batrachospermum delicatulum (= Sirodotia delicatula), one of Batrachospermum macrosporum and two of the 'Chantransia' stage), including the influence of physical variables (current velocity, depth, irradiance and substratum), were investigated in four streams of São Paulo State, southeastern Brazil. The populations of B. delicatulum and the 'Chantransia' stage occurred under very diverse microhabitat conditions, which probably contributes to their wide spatial and seasonal distribution in Brazilian streams. Results suggest branch reconfiguration as a probable mechanism of adaptation to current velocity based on the occurrence of: (i) B. macrosporum (a large mucilaginous form with presumably little ability for branch reconfiguration) under lower current velocity than B. delicatulum; (ii) only dense plants in populations with high current velocities (> 60 cm s-1), whereas 53-77% of dense plants were seen in populations exposed to lower currents (< 40 cm s-1); (iii) positive correlations of plant length with internode length in populations under low current velocities and negative correlation in a population with high velocity (132 cm s-1); and (iv) negative correlations of current velocity with plant diameter and internode length in a population under high flow. This study, involving mainly dioecious populations, revealed that B. delicatulum displayed higher fertilization rates than B. macrosporum. A complementary explanation for a dioecious species to increase fertilization success was proposed consisting of outcrossing among intermingled male and female adjacent plants within an algal spot

    Photosynthetic characteristics of charophytes from tropical iotic ecosystems

    No full text
    Responses of photosynthetic rates, determined by oxygen evolution using the light and dark bottles technique, to different temperatures, irradiances, pH, and diurnal rhythm were analyzed under laboratory conditions in four charophyte species (Chara braunii Gmelin, C. guairensis R. Bicudo, Nitella subglomerata A. Braun and Nitella sp.) from Iotic habitats in southeastern Brazil. Parameters derived from the photosynthesis versus irradiance curves indicated affinity to low irradiances for all algae tested. Some degree of photoinhibition, [β = -(0.30-0.13) mg 02 g-1 dry weight h-1 (μmol photons m-2 s-1)-1], low light compensation points (lc = 4-20 μmol photons m-2 s-1) were found for all species analyzed, as well as low values of light saturation parameter (lk) and saturation (ls) 29-130 and 92-169 μmol photons m-2 S-1, respectively. Photoacclimation was observed in two populations of N. subglomerata collected from sites with different irradiances, consisting of variations in photosynthetic parameters (higher values of α, and lower of lk and maximum photosynthetic rate, Pmax, in the population under lower irradiance). The highest photosynthetic rates for Chara species were observed at 10-15°C, while for Nitella the highest photosynthetic rate was observed at 20-25°C, despite the lack of significant differences among most levels tested. Rates of dark respiration significantly increase with temperature, with the highest values at 25°C. The results from pH experiments showed highest photosynthetic rates under pH 4.0 for all algae, suggesting higher affinity for inorganic carbon in the form of carbon dioxide, except in one population of N. subglomerata, with similar rates under the three levels, suggesting indistinct use of bicarbonate and carbon dioxide. Diurnal changes in photosynthetic rates revealed a general pattern for most algae tested, which was characterized by two peaks: the first (higher) during the morning (07.00-11.00) and the second (lower) in the afternoon (14.00-17.00). This suggests an endogenous rhythm determining the daily variations in photosynthetic rates

    Reproductive ecology of the freshwater red alga Batrachospermum delicatulum (Batrachospermales, Rhodophyta) in three tropical streams

    No full text
    Batrachospermum delicatulum specimens from three stream segments were analyzed from a tropical region in south-eastern Brazil (20°18′- 20°49′S, 49°13′-49°46′W). Physical and chemical parameters and the spatial placement of thalli were investigated along with the reproductive characteristics of the gametophytic phase. Sequence data of the cox 2-3 spacer region was also utilized to evaluate genetic variation in individuals within and among stream segments. Gametophyte occurred under relatively diverse environmental conditions, whereas thalli abundance was weakly or not correlated to environmental variables within the stream segments. All specimens examined were dioecious. The ratio of male/female plants was relatively low (0.5 to 1.3) and male plants tended to occur as clumps (two or three plants together). High reproductive success was observed, as indicated by the occurrence of 100% fertilized (carposporophytic) female plants. This is similar to previous reports for this and other dioecious species, which is remarkable considering the relatively low proportion of male/female plants. Results support the two hypotheses to explain the high reproductive success in dioecious species. The occurrence of male plants in clumps was evidence for a strict spatial relationship (i.e. male plants located in upstream position of female plants in order to release spermatia, which would be carried by eddies through female plants). In contrast, the occurrence of male and female plants adjacent to each other allowed outcrossing among neighboring plants with intermingled male and female branches, which seemed more applicable to some situations (low turbulence habitats). The cox 2-3 spacer region from the 18 individuals sequenced was 376 bp and the DNA sequence was identical with no base pair substitutions. Likewise, a previous study of another Batrachospermum species showed that the same haplotypes were present in all stream segments from the same drainage basin, even though the stream segments were a considerable distance apart. Short distance dispersal either by small birds or waterway connectivity might explain these findings

    Somatic meiosis and development of the juvenile gametophyte in members of the Batrachospermales sensu lato (Rhodophyta)

    No full text
    Seven populations (six in culture and one sampled directly from nature) of the freshwater red algal families Batrachospermaceae, Lemaneaceae and Thoreaceae were examined, involving three species of Batrachospermum, two of Paralemanea and one of Thorea. All 'Chantransia' stages ultimately produced juvenile gametophytes. The production of juvenile gametophytes in the three populations of Batrachospermum was generally most abundant at 15°C and low irradiances (47-68 μmol photons m-2 s-1). The most abundant gametophyte development in the Paralemanea species was observed at 10°C and low or high irradiances (47-142 μmol photons m-2 s-1). Gametophyte production in Thoreaceae occurred at higher temperatures (20°C) and also at low irradiances. In species of the Batrachospermaceae and Lemaneaceae, the 'elimination cells' can be situated on the basal or suprabasal cell of the juvenile gametophyte, but the position is usually fixed in individual species. The presence and position of the elimination cells remain to be established in Thoreaceae. Our results corroborate a previous study suggesting that the position of elimination cells is such a constant feature that it is of potential diagnostic value at the generic or infrageneric (sectional or specific) level. The characteristics observed in the development of the juvenile gametophytes in species of Batrachospermaceae and Lemaneaceae essentially agreed with general descriptions in the previous studies. The characteristics of the Thoreaceae, with a distinctive developmental pattern of the juvenile gametophyte and the occurrence of two morphological types in the 'Chantransia' stage, support the proposal to elevate it to the ordinal level. Two remarkable observations in Batrachospermum species were the production of numerous juvenile gametophytes from filaments of the same plant of the 'Chantransia' stage and the formation of a system of rhizoidal filaments or cell agglomeration of the juvenile gametophytes, which produced new gametophytes. These two characteristics potentially increase the formation of additional gametophytes under favourable conditions
    corecore