1,819 research outputs found

    Separation of traces of metal ions from sodium matrices

    Get PDF
    Method for isolating metal ion traces from sodium matrices consists of two extractions and an ion exchange step. Extraction is accomplished by using 2-thenoyltrifluoracetone and dithizone followed by cation exchange

    Supercoil formation in DNA denaturation

    Full text link
    We generalize the Poland-Scheraga (PS) model to the case of a circular DNA, taking into account the twisting of the two strains around each other. Guided by recent single-molecule experiments on DNA strands, we assume that the torsional stress induced by denaturation enforces formation of supercoils whose writhe absorbs the linking number expelled by the loops. Our model predicts that, when the entropy parameter of a loop satisfies c≤2c \le 2, denaturation transition does not take place. On the other hand for c>2c>2 a first-order denaturation transition is consistent with our model and may take place in the actual system, as in the case with no supercoils. These results are in contrast with other treatments of circular DNA melting where denaturation is assumed to be accompanied by an increase in twist rather than writhe on the bound segments.Comment: 4 pages, 3 figures, accepted for publication in PRE Rapid Com

    Topological and geometrical entanglement in a model of circular DNA undergoing denaturation

    Full text link
    The linking number (topological entanglement) and the writhe (geometrical entanglement) of a model of circular double stranded DNA undergoing a thermal denaturation transition are investigated by Monte Carlo simulations. By allowing the linking number to fluctuate freely in equilibrium we see that the linking probability undergoes an abrupt variation (first-order) at the denaturation transition, and stays close to 1 in the whole native phase. The average linking number is almost zero in the denatured phase and grows as the square root of the chain length, N, in the native phase. The writhe of the two strands grows as the square root of N in both phases.Comment: 7 pages, 11 figures, revte

    Ranking knots of random, globular polymer rings

    Full text link
    An analysis of extensive simulations of interacting self-avoiding polygons on cubic lattice shows that the frequencies of different knots realized in a random, collapsed polymer ring decrease as a negative power of the ranking order, and suggests that the total number of different knots realized grows exponentially with the chain length. Relative frequencies of specific knots converge to definite values because the free energy per monomer, and its leading finite size corrections, do not depend on the ring topology, while a subleading correction only depends on the crossing number of the knots.Comment: 4 pages, 5 figure

    Nonequilibrium Kinetics of One-Dimensional Bose Gases

    Full text link
    We study cold dilute gases made of bosonic atoms, showing that in the mean-field one-dimensional regime they support stable out-of-equilibrium states. Starting from the 3D Boltzmann-Vlasov equation with contact interaction, we derive an effective 1D Landau-Vlasov equation under the condition of a strong transverse harmonic confinement. We investigate the existence of out-of-equilibrium states, obtaining stability criteria similar to those of classical plasmas.Comment: 16 pages, 6 figures, accepted for publication in Journal of Statistical Mechanics: Theory and Experimen

    Switching dynamics in cholesteric blue phases

    Full text link
    Blue phases are networks of disclination lines, which occur in cholesteric liquid crystals near the transition to the isotropic phase. They have recently been used for the new generation of fast switching liquid crystal displays. Here we study numerically the steady states and switching hydrodynamics of blue phase I (BPI) and blue phase II (BPII) cells subjected to an electric field. When the field is on, there are three regimes: for very weak fields (and strong anchoring at the boundaries) the blue phases are almost unaffected, for intermediate fields the disclinations twist (for BPI) and unzip (for BPII), whereas for very large voltages the network dissolves in the bulk of the cell. Interestingly, we find that a BPII cell can recover its original structure when the field is switched off, whereas a BPI cell is found to be trapped more easily into metastable configurations. The kinetic pathways followed during switching on and off entails dramatic reorganisation of the disclination networks. We also discuss the effect of changing the director field anchoring at the boundary planes and of varying the direction of the applied field.Comment: 17 pages, 11 figure

    What is the length of a knot in a polymer?

    Full text link
    We give statistical definitions of the length, l, of a loose prime knot tied into a long, fluctuating ring macromolecule. Monte Carlo results for the equilibrium, good solvent regime show that ~ N^t, where N is the ring length and t ~ 0.75 is independent of the knot topology. In the collapsed regime below the theta temperature, length determinations based on the entropic competition of different knots within the same ring show delocalization (t~1).Comment: 9 pages, 5 Postscript figure

    Rheology of cholesteric blue phases

    Full text link
    Blue phases of cholesteric liquid crystals offer a spectacular example of naturally occurring disclination line networks. Here we numerically solve the hydrodynamic equations of motion to investigate the response of three types of blue phases to an imposed Poiseuille flow. We show that shear forces bend and twist and can unzip the disclination lines. Under gentle forcing the network opposes the flow and the apparent viscosity is significantly higher than that of an isotropic liquid. With increased forcing we find strong shear thinning corresponding to the disruption of the defect network. As the viscosity starts to drop, the imposed flow sets the network into motion. Disclinations break-up and re-form with their neighbours in the flow direction. This gives rise to oscillations in the time-dependent measurement of the average stress.Comment: 4 pages, 4 figure

    The broad band spectral properties of galactic X-ray binary pulsars

    Get PDF
    BeppoSAX observed several galactic binary X-ray pulsars during the Science Verification Phase and in the first year of the regular program. The complex emission spectra of these sources are an ideal target for the BeppoSAX instrumentation, that can measure the emission spectra in an unprecedented broad energy band. Using this capability of BeppoSAX a detailed observational work can be done on the galactic X-ray pulsars. In particular the 0.1-200 keV energy band allows the shape of the continuum emission to be tightly constrained. A better determination of the underlying continuum allows an easier detection of features superimposed onto it, both at low energy (Fe K and L, Ne lines) and at high energies (cyclotron features). We report on the spectral properties of a sample of X-ray pulsars observed with BeppoSAX comparing the obtained results. Some ideas of common properties are also discussed and compared with our present understanding of the emission mechanisms and processes.Comment: 6 pages, 2 figures. Uses espcrc2.sty (included).To appear in Proceedings of "The Active X-ray Sky: Results from BeppoSAX and Rossi-XTE
    • …
    corecore