7 research outputs found

    A cross-talk between DNA methylation and H3 lysine 9 dimethylation at the KvDMR1 region controls the induction of Cdkn1c in muscle cells

    Get PDF
    The cdk inhibitor p57kip2, encoded by the Cdkn1c gene, plays a critical role in mammalian development and in the differentiation of several tissues. Cdkn1c protein levels are carefully regulated via imprinting and other epigenetic mechanisms affecting both the promoter and distant regulatory elements, which restrict its expression to particular developmental phases or specific cell types. Inappropriate activation of these regulatory mechanisms leads to Cdkn1c silencing, causing growth disorders and cancer. We have previously reported that, in skeletal muscle cells, induction of Cdkn1c expression requires the binding of the bHLH myogenic factor MyoD to a long-distance regulatory element within the imprinting control region KvDMR1. Interestingly, MyoD binding to KvDMR1 is prevented in myogenic cell types refractory to the induction of Cdkn1c. In the present work, we took advantage of this model system to investigate the epigenetic determinants of the differential interaction of MyoD with KvDMR1. We show that treatment with the DNA demethylating agent 5-azacytidine restores the binding of MyoD to KvDMR1 in cells unresponsive to Cdkn1c induction. This, in turn, promotes the release of a repressive chromatin loop between KvDMR1 and Cdkn1c promoter and, thus, the upregulation of the gene. Analysis of the chromatin status of Cdkn1c promoter and KvDMR1 in unresponsive compared to responsive cell types showed that their differential responsiveness to the MyoD-dependent induction of the gene does not involve just their methylation status but, rather, the differential H3 lysine 9 dimethylation at KvDMR1. Finally, we report that the same histone modification also marks the KvDMR1 region of human cancer cells in which Cdkn1c is silenced. On the basis of these results, we suggest that the epigenetic status of KvDMR1 represents a critical determinant of the cell type-restricted expression of Cdkn1c and, possibly, of its aberrant silencing in some pathological conditions

    The long non-coding RNA Kcnq1ot1 controls maternal p57 expression in muscle cells by promoting H3K27me3 accumulation to an intragenic MyoD-binding region

    Get PDF
    BACKGROUND: The cell-cycle inhibitor p57kip2 plays a critical role in mammalian development by coordinating cell proliferation and differentiation in many cell types. p57kip2 expression is finely regulated by several epigenetic mechanisms, including paternal imprinting. Kcnq1ot1, a long non-coding RNA (LncRNA), whose gene maps to the p57Kip2 imprinting domain, is expressed exclusively from the paternal allele and participates in the cis-silencing of the neighboring imprinted genes through chromatin-level regulation. In light of our previous evidence of a functional interaction between myogenic factors and imprinting control elements in the regulation of the maternal p57Kip2 allele during muscle differentiation, we examined the possibility that also Kcnq1ot1 could play an imprinting-independent role in the control of p57Kip2 expression in muscle cells. RESULTS: We found that Kcnq1ot1 depletion by siRNA causes the upregulation of the maternal and functional p57Kip2 allele during differentiation, suggesting a previously undisclosed role for this LncRNA. Consistently, Chromatin Oligo-affinity Precipitation assays showed that Kcnq1ot1 physically interacts not only with the paternal imprinting control region of the locus, as already known, but also with both maternal and paternal alleles of a novel p57Kip2 regulatory region, located intragenically and containing two binding sites for the muscle-specific factor MyoD. Moreover, chromatin immunoprecipitation assays after Kcnq1ot1 depletion demonstrated that the LncRNA is required for the accumulation of H3K27me3, a chromatin modification catalyzed by the histone-methyl-transferase EZH2, at the maternal p57kip2 intragenic region. Finally, upon differentiation, the binding of MyoD to this region and its physical interaction with Kcnq1ot1, analyzed by ChIP and RNA immunoprecipitation assays, correlate with the loss of EZH2 and H3K27me3 from chromatin and with p57Kip2 de-repression. CONCLUSIONS: These findings highlight the existence of an imprinting-independent role of Kcnq1ot1, adding new insights into the biology of a still mysterious LncRNA. Moreover, they expand our knowledge about the molecular mechanisms underlying the tight and fine regulation of p57Kip2 during differentiation and, possibly, its aberrant silencing observed in several pathologic conditions

    Poly(ADP-ribose) Polymerase 1 (PARP1) restrains MyoD-dependent gene expression during muscle differentiation

    Get PDF
    The myogenic factor MyoD regulates skeletal muscle differentiation by interacting with a variety of chromatin-modifying complexes. Although MyoD can induce and maintain chromatin accessibility at its target genes, its binding and trans-activation ability can be limited by some types of not fully characterized epigenetic constraints. In this work we analysed the role of PARP1 in regulating MyoD-dependent gene expression. PARP1 is a chromatin-associated enzyme, playing a well recognized role in DNA repair and that is implicated in transcriptional regulation. PARP1 affects gene expression through multiple mechanisms, often involving the Poly(ADP-ribosyl)ation of chromatin proteins. In line with PARP1 down-regulation during differentiation, we observed that PARP1 depletion boosts the up-regulation of MyoD targets, such as p57, myogenin, Mef2C and p21, while its re-expression reverts this effect. We also found that PARP1 interacts with some MyoD-binding regions and that its presence, independently of the enzymatic activity, interferes with MyoD recruitment and gene induction. We finally suggest a relationship between the binding of PARP1 and the loss of the activating histone modification H3K4me3 at MyoD-binding regions. This work highlights not only a novel player in the epigenetic control of myogenesis, but also a repressive and catalytic-independent mechanisms by which PARP1 regulates transcription

    Transcriptional regulation of i p57 sup kip2 sup i expression during development differentiation and disease

    No full text
    1. ABSTRACT p57kip2 is the most complex member of the CIP/KIP family of cyclin-dependent kinase inhibitors and plays a fundamental role in regulating cell cycle and differentiation during mammalian development. Consistently with a key role for p57kip2 in the spatial and temporal control of cell proliferation, its expression is fine-tuned by multiple regulatory mechanisms, resulting in a tissue-, developmental phase- and cell type-specific pattern. Moreover, p57kip2 is an imprinted gene, further supporting the importance of its proper expression dosage. Importantly, misregulation of p57kip2 expression has been associated, more frequently than mutations in its coding region, to human growth disorders, such as Beckwith-Wiedemann and Silver-Russell syndromes, as well as to the onset of several types of cancers. This review will summarize the molecular mechanisms regulating p57kip2 transcription during differentiation and development, their relationship with the imprinting control and their alterations in growth-related diseases and cancer. Particular attention will be given to the role of epigenetic mechanisms, involving DNA methylation, histone modifications, long-range chromatin interactions and non-coding RNAs in modulating and integrating the functions of cis-regulatory elements and trans-acting factors

    A cross-talk between DNA methylation and H3 lysine 9 dimethylation at the KvDMR1 region controls the induction of <i>Cdkn1c</i> in muscle cells

    No full text
    <p>The cdk inhibitor p57<sup>kip2</sup>, encoded by the <i>Cdkn1c</i> gene, plays a critical role in mammalian development and in the differentiation of several tissues. Cdkn1c protein levels are carefully regulated via imprinting and other epigenetic mechanisms affecting both the promoter and distant regulatory elements, which restrict its expression to particular developmental phases or specific cell types. Inappropriate activation of these regulatory mechanisms leads to <i>Cdkn1c</i> silencing, causing growth disorders and cancer. We have previously reported that, in skeletal muscle cells, induction of <i>Cdkn1c</i> expression requires the binding of the bHLH myogenic factor MyoD to a long-distance regulatory element within the imprinting control region KvDMR1. Interestingly, MyoD binding to KvDMR1 is prevented in myogenic cell types refractory to the induction of <i>Cdkn1c</i>. In the present work, we took advantage of this model system to investigate the epigenetic determinants of the differential interaction of MyoD with KvDMR1. We show that treatment with the DNA demethylating agent 5-azacytidine restores the binding of MyoD to KvDMR1 in cells unresponsive to <i>Cdkn1c</i> induction. This, in turn, promotes the release of a repressive chromatin loop between KvDMR1 and <i>Cdkn1c</i> promoter and, thus, the upregulation of the gene. Analysis of the chromatin status of <i>Cdkn1c</i> promoter and KvDMR1 in unresponsive compared to responsive cell types showed that their differential responsiveness to the MyoD-dependent induction of the gene does not involve just their methylation status but, rather, the differential H3 lysine 9 dimethylation at KvDMR1. Finally, we report that the same histone modification also marks the KvDMR1 region of human cancer cells in which <i>Cdkn1c</i> is silenced. On the basis of these results, we suggest that the epigenetic status of KvDMR1 represents a critical determinant of the cell type-restricted expression of <i>Cdkn1c</i> and, possibly, of its aberrant silencing in some pathological conditions.</p
    corecore