162 research outputs found

    The Safety of Cruciferous Plants in Humans: A Systematic Review

    Get PDF
    Some cruciferous plants may serve as preventive treatments for several medical conditions; our objective was to systematically investigate their safety in humans. Four electronic databases were searched, and, of 10,831 references identified, 50 were included. Data were extracted by two independent reviewers, whereafter the association between interventions and adverse events was assessed. Adverse events in 53 subjects were identified through clinical trials; of these, altered drug metabolism was rated as certainly/likely caused by cruciferous plants. Adverse events in 1247 subjects were identified through observational studies, of which none received high causality ratings. Adverse events in 35 subjects were identified through case reports, of which allergies and warfarin resistance were rated as certainly/likely caused by cruciferous plants. We conclude that cruciferous plants are safe in humans, with the exception of allergies. Individuals treated with warfarin should consult their physician. Further investigation of uses of cruciferous plants in preventative medicine is warranted

    PedLER: Pediatric Longitudinal Experience with Residents

    Get PDF
    Pediatric Longitudinal Experience with Residents (PedLER) is a unique program at the University of Toronto, designed to foster formal mentorship between pediatric residents and first-year medical students

    Computing radiation from Kerr black holes: Generalization of the Sasaki-Nakamura equation

    Full text link
    As shown by Teukolsky, the master equation governing the propagation of weak radiation in a black hole spacetime can be separated into four ordinary differential equations, one for each spacetime coordinate. (``Weak'' means the radiation's amplitude is small enough that its own gravitation may be neglected.) Unfortunately, it is difficult to accurately compute solutions to the separated radial equation (the Teukolsky equation), particularly in a numerical implementation. The fundamental reason for this is that the Teukolsky equation's potentials are long ranged. For non-spinning black holes, one can get around this difficulty by applying transformations which relate the Teukolsky solution to solutions of the Regge-Wheeler equation, which has a short-ranged potential. A particularly attractive generalization of this approach to spinning black holes for gravitational radiation (spin weight s = -2) was given by Sasaki and Nakamura. In this paper, I generalize Sasaki and Nakamura's results to encompass radiation fields of arbitrary integer spin weight, and give results directly applicable to scalar (s = 0) and electromagnetic (s = -1) radiation. These results may be of interest for studies of astrophysical radiation processes near black holes, and of programs to compute radiation reaction forces in curved spacetime.Comment: 10 pages, no figures, to appear in Phys. Rev. D. Present version updates the references, fixes some typos, and corrects some of the Introductory tex

    Unwrapping Closed Timelike Curves

    Full text link
    Closed timelike curves (CTCs) appear in many solutions of the Einstein equation, even with reasonable matter sources. These solutions appear to violate causality and so are considered problematic. Since CTCs reflect the global properties of a spacetime, one can attempt to change its topology, without changing its geometry, in such a way that the former CTCs are no longer closed in the new spacetime. This procedure is informally known as unwrapping. However, changes in global identifications tend to lead to local effects, and unwrapping is no exception, as it introduces a special kind of singularity, called quasi-regular. This "unwrapping" singularity is similar to the string singularities. We give two examples of unwrapping of essentially 2+1 dimensional spacetimes with CTCs, the Gott spacetime and the Godel universe. We show that the unwrapped Gott spacetime, while singular, is at least devoid of CTCs. In contrast, the unwrapped Godel spacetime still contains CTCs through every point. A "multiple unwrapping" procedure is devised to remove the remaining circular CTCs. We conclude that, based on the two spacetimes we investigated, CTCs appearing in the solutions of the Einstein equation are not simply a mathematical artifact of coordinate identifications, but are indeed a necessary consequence of General Relativity, provided only that we demand these solutions do not possess naked quasi-regular singularities.Comment: 29 pages, 9 figure

    Mars Sedimentary Geology: Key Concepts and Outstanding Questions

    Get PDF
    Processes that operate at planetary surfaces have the potential to record a history of planetary evolution in the form of sedimentary rocks. This is important because our experience on Earth shows that sediments and sedimentary rocks are the dominant archive of high-resolution proxies of present and past tectonic, climatic, and biological processes. Our understanding of the evolution of Earth’s very ancient climate and paleobiological records derives from detailed examination of the mineralogical, textural, and geochemical signatures preserved in the sedimentary rock record. Sedimentary rocks were first recognized on Mars less than a decade ago (Malin and Edgett, 2000). Recent interpretations of data collected by the Mars Express and Mars Reconnaissance Orbiter spacecraft have confirmed the surprising abundance of these sedimentary rocks, the past role of water on the martian surface, and the similarity—in some cases—to sedimentary rocks formed on Earth. Thick sulfaterich deposits invite comparison to terrestrial evaporites (Grotzinger et al., 2005). In other cases, clay-rich strata are interpreted as the terminal deposits of source-to-sink systems with well-developed fluvial networks in the upper reaches of watersheds that date back to a much wetter period in Mars’ earliest history (Ehlmann et al., 2008; Metz et al., 2009). However, these Earth-like depositional systems contrast with other deposits that may be unique in the Solar System: for example, vast terrains as large as Earth’s continents covered by thick veneers of strata that may derive entirely from settling out of wind-transported dust (Bridges et al., 2010). Whatever their origin, it is now clear that the sedimentary rocks of Mars represent a new frontier for research. Mars science is in its golden era of exploration—the past decade of orbiter and landed missions has produced an extraordinary amount of new data relevant to the analysis of sediments and sedimentary rocks, and robust international programs exist for future missions. To help stimulate discussion of these data, the First International Conference on Mars Sedimentology and Stratigraphy was convened in El Paso, Texas, in April 2010. The contents of this white paper represent the most significant findings of the conference, with additional information provided by the coauthors, and focus on seven key questions for future investigation by the sedimentary geology community

    SPIRITS 16tn in NGC 3556: A heavily obscured and low-luminosity supernova at 8.8 Mpc

    Get PDF
    We present the discovery by the SPitzer InfraRed Intensive Transients Survey (SPIRITS) of a likely supernova (SN) in NGC 3556 at only 8.8 Mpc, which, despite its proximity, was not detected by optical searches. A luminous infrared (IR) transient at M[4.5]=16.7M_{[4.5]} = -16.7 mag (Vega), SPIRITS 16tn is coincident with a dust lane in the inclined, star-forming disk of the host. Using IR, optical, and radio observations, we attempt to determine the nature of this event. We estimate AVA_V \approx 8 - 9 mag of extinction, placing it among the three most highly obscured IR-discovered SNe to date. The [4.5] light curve declined at a rate of 0.013 mag day1^{-1}, and the [3.6][4.5][3.6] - [4.5] color grew redder from 0.7 to \gtrsim 1.0 mag by 184.7 days post discovery. Optical/IR spectroscopy shows a red continuum, but no clearly discernible features, preventing a definitive spectroscopic classification. Deep radio observations constrain the radio luminosity of SPIRITS 16tn to Lν1024L_{\nu} \lesssim 10^{24} erg s1^{-1} Hz1^{-1} between 3 - 15 GHz, excluding many varieties of radio core-collapse SNe. A type Ia SN is ruled out by the observed red IR color, and lack of features normally attributed to Fe-peak elements in the optical and IR spectra. SPIRITS 16tn was fainter at [4.5] than typical stripped-envelope SNe by \approx 1 mag. Comparison of the spectral energy distribution to SNe II suggests SPIRITS 16tn was both highly obscured, and intrinsically dim, possibly akin to the low-luminosity SN 2005cs. We infer the presence of an IR dust echo powered by a peak luminosity of the transient of 5×10405 \times 10^{40} erg s1<Lpeak<4×1043^{-1} < L_{\mathrm{peak}} < 4\times10^{43} erg s1^{-1}, consistent with the observed range for SNe II. This discovery illustrates the power of IR surveys to overcome the compounding effects of visible extinction and optically sub-luminous events in completing the inventory of nearby SNe.Comment: 25 pages, 10 figures, submitted to Ap
    corecore