17 research outputs found

    Controlling Ambipolar Transport and Voltage Inversion in Solution-Processed Thin-Film Devices through Polymer Blending

    Get PDF
    Ambipolar semiconductors are attracting a great interest as building blocks for photovoltaics and logic applications. Field-effect transistors built on solution-processable ambipolar materials hold strong promise for the engineering of large-area low-cost logic circuits with a reduced number of devices components. Such devices still suffer from a number of obstacles including the challenging processing, the low Ion/Ioff, the unbalanced mobility, and the low gain in complementary metal–oxide–semiconductor (CMOS)-like circuits. Here, we demonstrate that the simple approach of blending commercially available n- and p-type polymers such as P(NDI2OD-T2), P3HT, PCD-TPT, PDVT-8, and IIDDT-C3 can yield high-performing ambipolar field-effect transistors with balanced mobilities and Ion/Ioff > 10^7. Each single component was studied separately and upon blending by means of electrical characterization, ambient ultraviolet photoelectron spectroscopy, atomic force microscopy, and grazing incidence wide angle X-ray scattering to unravel the correlation between the morphology/structure of the semiconducting films and their functions. Blends of n- and p-type semiconductors were used to fabricate CMOS-like inverter circuits with state-of-the-art gains over 160 in the case of P(NDI2OD-T2) blended with PDVT-8. Significantly, our blending approach was successful in producing semiconducting films with balanced mobilities for each of the four tested semiconductor blends, although the films displayed different structural and morphological features. Our strategy, which relies on establishing a correlation between ambipolar performances, film morphology, molecular structure, and blending ratio, is extremely efficient and versatile; thus it could be applied to a wide range of polymers or solution processable small molecules

    High-Performance Phototransistors Based on PDIF-CN2 Solution-Processed Single Fiber and Multifiber Assembly

    Get PDF
    Here we describe the fabrication of organic phototransistors based on either single or multifibers integrated in three-terminal devices. These self-assembled fibers have been produced by solvent-induced precipitation of an air stable and solution-processable perylene di-imide derivative, i.e., PDIF-CN2. The optoelectronic properties of these devices were compared to devices incorporating more disordered spin-coated PDIF-CN2 thin-films. The single-fiber devices revealed significantly higher field-effect mobilities, compared to multifiber and thin-films, exceeding 2 cm2 V–1 s–1. Such an efficient charge transport is the result of strong intermolecular coupling between closely packed PDIF-CN2 molecules and of a low density of structural defects. The improved crystallinity allows efficient collection of photogenerated Frenkel excitons, which results in the highest reported responsivity (R) for single-fiber PDI-based phototransistors, and photosensitivity (P) exceeding 2 × 103 AW–1, and 5 × 103, respectively. These findings provide unambiguous evidence for the key role played by the high degree of order at the supramolecular level to leverage the material’s properties toward the fabrication of light-sensitive organic field-effect transistors combining a good operational stability, high responsivity and photosensitivity. Our results show also that the air-stability performances are superior in devices where highly crystalline supramolecularly engineered architectures serve as the active layer

    Self-Suspended Nanomesh Scaffold for Ultrafast Flexible Photodetectors Based on Organic Semiconducting Crystals

    Get PDF
    Self‐standing nanostructures are of fundamental interest in materials science and nanoscience and are widely used in (opto‐)electronic and photonic devices as well as in micro‐electromechanical systems. To date, large‐area and self‐standing nanoelectrode arrays assembled on flexible substrates have not been reported. Here the fabrication of a hollow nanomesh scaffold on glass and plastic substrates with a large surface area over 1 mm2 and ultralow leakage current density (≈1–10 pA mm−2 @ 2 V) across the empty scaffold is demonstrated. Thanks to the continuous sub‐micrometer space formed in between the nanomesh and the bottom electrode, highly crystalline and dendritic domains of 6,13‐bis(triisopropylsilylethinyl)pentacene growing within the hollow cavity can be observed. The high degree of order at the supramolecular level leads to efficient charge and exciton transport; the photovoltaic detector supported on flexible polyethylene terephthalate substrates exhibits an ultrafast photoresponse time as short as 8 ns and a signal‐to‐noise ratio approaching 10^5. Such a hollow scaffold holds great potential as a novel device architecture toward flexible (opto‐)electronic applications based on self‐assembled micro/nanocrystals

    Fast-Response Photonic Device Based on Organic-Crystal Heterojunctions Assembled into a Vertical-Yet-Open Asymmetric Architecture

    Get PDF
    Crystalline dioctyl-3,4,9,10-perylenedicarboximide nanowires and 6,13-bis(triisopropylsilylethynyl) pentacene microplates are integrated into a vertical-yet-open asymmetrical heterojunction for the realization of a high-performance organic photovoltaic detector, which shows fast photoresponse, ultrahigh signal-to-noise ratio, and high sensitivity to weak light

    Optically switchable transistors comprising a hybrid photochromic molecule/n-type organic active layer

    Get PDF
    Organic semiconductors can be easily combined with other molecular building blocks in order to fabricate multifunctional devices, in which each component conveys a specific (opto)electronic function. We have fabricated photoswitchable hybrid thin-film transistors based on an active bi-component material, consisting of an n-type fullerene derivative and a photochromic diarylethene that possesses light-tunable energy levels. The devices can be gated in two independent ways by either using an electrical stimulus via the application of a voltage to the gate electrode or an optical stimulus causing interconversion of the diarylethene molecules between their two isomers. Fine control over the device output current is achieved by engineering the diarylethenes' LUMO that can act as an intra-gap state controlled by a distinct wavelength in the UV or in the visible range. Importantly, the devices based on a mixed diarylethene/fullerene active layer preserve the high mobility of the pristine semiconductor

    A nanomesh scaffold for supramolecular nanowire optoelectronic devices

    Get PDF
    Supramolecular organic nanowires are ideal nanostructures for optoelectronics because they exhibit both efficient exciton generation as a result of their high absorption coefficient and remarkable light sensitivity due to the low number of grain boundaries and high surface-to-volume ratio. To harvest photocurrent directly from supramolecular nanowires it is necessary to wire them up with nanoelectrodes that possess different work functions. However, devising strategies that can connect multiple nanowires at the same time has been challenging. Here, we report a general approach to simultaneously integrate hundreds of supramolecular nanowires of N,Nâ€Č-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8) in a hexagonal nanomesh scaffold with asymmetric nanoelectrodes. Optimized PTCDI-C8 nanowire photovoltaic devices exhibit a signal-to-noise ratio approaching 107, a photoresponse time as fast as 10 ns and an external quantum efficiency >55%. This nanomesh scaffold can also be used to investigate the fundamental mechanism of photoelectrical conversion in other low-dimensional semiconducting nanostructures

    Current crowding issues on nanoscale planar organic transistors for spintronic applications

    Get PDF
    The predominance of interface resistance makes current crowding ubiquitous in short channel organic electronics devices but its impact on spin transport has never been considered. We investigate electrochemically doped nanoscale PBTTT short channel devices and observe the smallest reported values of crowding lengths, found for sub-100 nm electrodes separation. These observed values are nevertheless exceeding the spin diffusion lengths reported in the literature. We discuss here how current crowding can be taken into account in the framework of the Fert–Jaffrùs model of spin current propagation in heterostructures, and predict that the anticipated resulting values of magnetoresistance can be significantly reduced. Current crowding therefore impacts spin transport applications and interpretation of the results on spin valve devices

    Improving the electrical performance of solution processed oligothiophene thin-film transistors via structural similarity blending

    Get PDF
    Here we show that the blending of structurally similar oligothiophene molecules is an effective approach to improve the field-effect mobility and Ion/Ioff as compared to single component based transistors. The effect of addition of each component is studied extensively using a wide array of methods such as X-ray diffraction, ToF-SIMS, and ambient UPS correlated with the electrical characterization

    Nano-Subsidence-Assisted Precise Integration of Patterned Two-Dimensional Materials for High-Performance Photodetector Arrays

    Get PDF
    The spatially precise integration of arrays of micropatterned two-dimensional (2D) crystals onto three-dimensionally structured Si/SiO2 substrates represents an attractive, low-cost system-on-chip strategy toward the realization of extended functions in silicon microelectronics. However, the reliable integration of such atomically thin arrays on planar patterned surfaces has proven challenging due to their poor adhesion to underlying substrates, as ruled by weak van der Waals interactions. Here, we report on an integration method utilizing the flexibility of the atomically thin crystals and their physical subsidence in liquids, which enables the reliable fabrication of the micropatterned 2D materials/Si arrays. Our photodiode devices display peak sensitivity as high as 0.35 A/W and external quantum efficiency (EQE) of ∌90%. The nano-subsidence technique represents a viable path to on-chip integration of 2D crystals onto silicon for advanced microelectronics

    Flexible non-volatile optical memory thin-film transistor device with over 256 distinct levels based on an organic bicomponent blend

    No full text
    Organic nanomaterials are attracting a great deal of interest for use in flexible electronic applications such as logic circuits, displays and solar cells. These technologies have already demonstrated good performances, but flexible organic memories are yet to deliver on all their promise in terms of volatility, operational voltage, write/erase speed, as well as the number of distinct attainable levels. Here, we report a multilevel non-volatile flexible optical memory thin-film transistor based on a blend of a reference polymer semiconductor, namely poly(3-hexylthiophene), and a photochromic diarylethene, switched with ultraviolet and green light irradiation. A three-terminal device featuring over 256 (8 bit storage) distinct current levels was fabricated, the memory states of which could be switched with 3 ns laser pulses. We also report robustness over 70 write–erase cycles and non-volatility exceeding 500 days. The device was implemented on a flexible polyethylene terephthalate substrate, validating the concept for integration into wearable electronics and smart nanodevices
    corecore