94 research outputs found

    Genetic Engineering as a Strategy to Improve the Therapeutic Efficacy of Mesenchymal Stem/Stromal Cells in Regenerative Medicine

    Get PDF
    Mesenchymal stem/stromal cells (MSCs) have been widely studied in the field of regenerative medicine for applications in the treatment of several disease settings. The therapeutic potential of MSCs has been evaluated in studies in vitro and in vivo, especially based on their anti-inflammatory and pro-regenerative action, through the secretion of soluble mediators. In many cases, however, insufficient engraftment and limited beneficial effects of MSCs indicate the need of approaches to enhance their survival, migration and therapeutic potential. Genetic engineering emerges as a means to induce the expression of different proteins and soluble factors with a wide range of applications, such as growth factors, cytokines, chemokines, transcription factors, enzymes and microRNAs. Distinct strategies have been applied to induce genetic modifications with the goal to enhance the potential of MCSs. This review aims to contribute to the update of the different genetically engineered tools employed for MSCs modification, as well as the factors investigated in different fields in which genetically engineered MSCs have been tested

    Analysis of multiple single nucleotide polymorphisms closely positioned in the ovine PRNP gene using linear fluorescent probes and melting curve analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Resistance and susceptibility to scrapie has been associated with single nucleotide polymorphisms located within codons 136, 154 and 171 of the ovine prion protein gene (<it>PRNP</it>). Dual-labelled HyBeacon probes were developed to analyse single and clustered polymorphisms within these and neighbouring codons.</p> <p>Methods</p> <p>Extracted DNAs and unpurified blood samples were genotyped with respect to polymorphisms in <it>PRNP </it>codons 136, 141, 154 and 171. PCR amplicons were investigated using a LightTyper instrument, measuring the stability of probe/target hybridisation through peak melting temperatures and determining the sequence of nucleotides at polymorphic sites.</p> <p>Results</p> <p>The performance of HyBeacon assays was evaluated in a validation study comparing genotypes with those obtained using a primer extension assay (Sequenom MassEXTEND) analysed on a MALDI-ToF mass spectrometer. Over 12,000 sheep samples were successfully genotyped, reliably detecting A<sup>136</sup>, V<sup>136</sup>, T<sup>136</sup>, T<sup>137</sup>, L<sup>141</sup>, F<sup>141 </sup>R<sup>154</sup>, H<sup>154</sup>, L<sup>168</sup>, R<sup>171</sup>, Q<sup>171</sup>, H<sup>171 </sup>and K<sup>171 </sup>sequence variants using only 4 HyBeacon probes.</p> <p>Conclusion</p> <p>HyBeacon assays provide an extremely robust and accurate method for the analysis of single and clustered <it>PRNP </it>polymorphisms in a high-throughput format. The flexibility of the diagnostic tests ensures that samples are correctly genotyped even in the presence of additional sequence variations that flank the polymorphisms of interest. Such sequence variations may also be neutralised using universal bases such as 5-nitroindole if required.</p

    Protease-sensitive synthetic prions

    Get PDF
    Prions arise when the cellular prion protein (PrP(C)) undergoes a self-propagating conformational change; the resulting infectious conformer is designated PrP(Sc). Frequently, PrP(Sc) is protease-resistant but protease-sensitive (s) prions have been isolated in humans and other animals. We report here that protease-sensitive, synthetic prions were generated in vitro during polymerization of recombinant (rec) PrP into amyloid fibers. In 22 independent experiments, recPrP amyloid preparations, but not recPrP monomers or oligomers, transmitted disease to transgenic mice (n = 164), denoted Tg9949 mice, that overexpress N-terminally truncated PrP. Tg9949 control mice (n = 174) did not spontaneously generate prions although they were prone to late-onset spontaneous neurological dysfunction. When synthetic prion isolates from infected Tg9949 mice were serially transmitted in the same line of mice, they exhibited sPrP(Sc) and caused neurodegeneration. Interestingly, these protease-sensitive prions did not shorten the life span of Tg9949 mice despite causing extensive neurodegeneration. We inoculated three synthetic prion isolates into Tg4053 mice that overexpress full-length PrP; Tg4053 mice are not prone to developing spontaneous neurological dysfunction. The synthetic prion isolates caused disease in 600-750 days in Tg4053 mice, which exhibited sPrP(Sc). These novel synthetic prions demonstrate that conformational changes in wild-type PrP can produce mouse prions composed exclusively of sPrP(Sc)

    Evaluation of two sets of immunohistochemical and Western blot confirmatory methods in the detection of typical and atypical BSE cases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Three distinct forms of bovine spongiform encephalopathy (BSE), defined as classical (C-), low (L-) or high (H-) type, have been detected through ongoing active and passive surveillance systems for the disease.</p> <p>The aim of the present study was to compare the ability of two sets of immunohistochemical (IHC) and Western blot (WB) BSE confirmatory protocols to detect C- and atypical (L- and H-type) BSE forms.</p> <p>Obex samples from cases of United States and Italian C-type BSE, a U.S. H-type and an Italian L-type BSE case were tested in parallel using the two IHC sets and WB methods.</p> <p>Results</p> <p>The two IHC techniques proved equivalent in identifying and differentiating between C-type, L-type and H-type BSE. The IHC protocols appeared consistent in the identification of PrP<sup>Sc </sup>distribution and deposition patterns in relation to the BSE type examined. Both IHC methods evidenced three distinct PrP<sup>Sc </sup>phenotypes for each type of BSE: prevailing granular and linear tracts pattern in the C-type; intraglial and intraneuronal deposits in the H-type; plaques in the L-type.</p> <p>Also, the two techniques gave comparable results for PrP<sup>Sc </sup>staining intensity on the C- and L-type BSE samples, whereas a higher amount of intraglial and intraneuronal PrP<sup>Sc </sup>deposition on the H-type BSE case was revealed by the method based on a stronger demasking step.</p> <p>Both WB methods were consistent in identifying classical and atypical BSE forms and in differentiating the specific PrP<sup>Sc </sup>molecular weight and glycoform ratios of each form.</p> <p>Conclusions</p> <p>The study showed that the IHC and WB BSE confirmatory methods were equally able to recognize C-, L- and H-type BSE forms and to discriminate between their different immunohistochemical and molecular phenotypes. Of note is that for the first time one of the two sets of BSE confirmatory protocols proved effective in identifying the L-type BSE form. This finding helps to validate the suitability of the BSE confirmatory tests for BSE surveillance currently in place.</p

    Transmissibility of Atypical Scrapie in Ovine Transgenic Mice: Major Effects of Host Prion Protein Expression and Donor Prion Genotype

    Get PDF
    Atypical scrapie or Nor98 has been identified as a transmissible spongiform encephalopathy (TSE) that is clearly distinguishable from classical scrapie and BSE, notably regarding the biochemical features of the protease-resistant prion protein PrPres and the genetic factors involved in susceptibility to the disease. In this study we transmitted the disease from a series of 12 French atypical scrapie isolates in a transgenic mouse model (TgOvPrP4) overexpressing in the brain ∼0.25, 1.5 or 6× the levels of the PrPARQ ovine prion protein under the control of the neuron-specific enolase promoter. We used an approach based on serum PrPc measurements that appeared to reflect the different PrPc expression levels in the central nervous system. We found that transmission of atypical scrapie, much more than in classical scrapie or BSE, was strongly influenced by the PrPc expression levels of TgOvPrP4 inoculated mice. Whereas TgOvPrP4 mice overexpressing ∼6× the normal PrPc level died after a survival periods of 400 days, those with ∼1.5× the normal PrPc level died at around 700 days. The transmission of atypical scrapie in TgOvPrP4 mouse line was also strongly influenced by the prnp genotypes of the animal source of atypical scrapie. Isolates carrying the AF141RQ or AHQ alleles, associated with increased disease susceptibility in the natural host, showed a higher transmissibility in TgOvPrP4 mice. The biochemical analysis of PrPres in TgOvPrP4 mouse brains showed a fully conserved pattern, compared to that in the natural host, with three distinct PrPres products. Our results throw light on the transmission features of atypical scrapie and suggest that the risk of transmission is intrinsically lower than that of classical scrapie or BSE, especially in relation to the expression level of the prion protein

    Atypical/Nor98 Scrapie Infectivity in Sheep Peripheral Tissues

    Get PDF
    Atypical/Nor98 scrapie was first identified in 1998 in Norway. It is now considered as a worldwide disease of small ruminants and currently represents a significant part of the detected transmissible spongiform encephalopathies (TSE) cases in Europe. Atypical/Nor98 scrapie cases were reported in ARR/ARR sheep, which are highly resistant to BSE and other small ruminants TSE agents. The biology and pathogenesis of the Atypical/Nor98 scrapie agent in its natural host is still poorly understood. However, based on the absence of detectable abnormal PrP in peripheral tissues of affected individuals, human and animal exposure risk to this specific TSE agent has been considered low. In this study we demonstrate that infectivity can accumulate, even if no abnormal PrP is detectable, in lymphoid tissues, nerves, and muscles from natural and/or experimental Atypical/Nor98 scrapie cases. Evidence is provided that, in comparison to other TSE agents, samples containing Atypical/Nor98 scrapie infectivity could remain PrPSc negative. This feature will impact detection of Atypical/Nor98 scrapie cases in the field, and highlights the need to review current evaluations of the disease prevalence and potential transmissibility. Finally, an estimate is made of the infectivity loads accumulating in peripheral tissues in both Atypical/Nor98 and classical scrapie cases that currently enter the food chain. The results obtained indicate that dietary exposure risk to small ruminants TSE agents may be higher than commonly believed

    CHEMICAL CONTROL OF THE REDBAY AMBROSIA BEETLE, XYLEBORUS GLABRATUS, AND OTHER SCOLYTINAE (COLEOPTERA: CURCULIONIDAE)

    Get PDF
    A BSTRACT The redbay ambrosia beetle (RAB), Xyleborus glabratus Eichhoff (Coleoptera: Curculionidae: Scolytinae), is an adventive pest of Lauraceae in the southeastern U.S. This wood-boring insect vectors a lethal fungus, Raffaelea lauricola T. C. Harr., Fraedrich &amp; Aghayeva , the causal agent of laurel wilt (LW) disease. The vector-pathogen complex is responsible for extensive mortality of native Persea trees in South Carolina, Georgia, and northern Florida, and now poses an imminent threat to the avocado ( Persea americana Mill.) industry in south Florida. While chemical control of the vector is not viewed as the primary solution, control tactics should be made available to Florida avocado growers. Field and laboratory tests were conducted using avocado bolts, potted avocado trees, and field grown swampbay trees ( Persea palustris (Raf.) Sarg.) treated with contact and systemic insecticides. Zeta-cypermethrin + bifenthrin and lambda-cyhalothrin + thiamethoxam provided the most consistent control of Scolytinae as contact insecticides, while methomyl, malathion, bifenthrin, and endosulfan were more variable in effectiveness. Avocado trees treated with fenpropathrin, cryolite Na Al fluoride, and lambda-cyhalothrin+thiametoxam had similar numbers of beetle entrance holes on treated trees as on the untreated control trees. No statistical differences were observed in disease severity on treated versus non-treated avocados or swampbay. Linear regressions between the number of RAB entrance holes per tree ( x) and LW disease severity ( y a ) and between RAB entrance holes per tree ( x) and recovery of R. lauricola ( y b ) were both significant. Key Words: Redbay ambrosia beetle, avocado, Persea , Xyleborus , Xylosandrus , Hypothenemus , chemical control R ESUMEN El cucarroncito de ambrosia del laurel, Xyleborus glabratus Eichhoff (Coleoptera: Curculionidae), es una plaga exótica de la familia Lauraceae que ha invadido el suroriente de los Estados Unidos. Este insecto barrenador es el vector del hongo, Raffaelea lauricola T.C. Harr., Fraedrich &amp; Aghayeva, agente causal de la enfermedad del secamiento del laurel. El complejo vector-patógeno es responsable de una extensa mortalidad de arboles nativos del genero Persea en Carolina del Sur, Georgia y en el norte de Florida y representa una amenaza inminente para la industria del aguacate ( Persea americana Mill.) de Florida. Aunque el control químico no es la única solución a este problema, se estima que este tipo de opción de tác-ticas se debe ofrecer a los productores de aguacate. Se condujeron experimentos tanto en campo como en laboratorio utilizando troncos de aguacate, arboles de aguacate y arboles del laurel de la ciénaga ( P. palustris (Raf.) Sarg.), los cuales se trataron con insecticidas de contacto y sistémicos. En general, zetaciypermetrina + bifenthrina y lambda-cyalotrina + tiametoxam dieron un control consistente de los Scolytinae como insecticidas de contacto, mientras que metomíl, malatión y bifentrina y endosulfan dieron resultados variables. No hubo diferencias significativas en los orificios de entrada de los cucarroncitos cuando se trataron los arboles de aguacate con fenpropatrina, floruro de cryolita NA Al y lambda-cyalotrina-tiametoxam comparado con los arboles testigo. No se observaron diferencias estadísticas en cuanto a la severidad de la enfermedad entre árboles tratados y aquellos no tratados. Sin embargo, modelos de regresión lineal entre el número de orificios por árbol ( x
    corecore