17 research outputs found

    Resilient communities through safer schools

    Get PDF
    Access to education is a basic human right. It is the 4th of the 17 Sustainable Development Goals (SDGs) and education is strongly associated with poverty reduction. Providing facilities to educate children requires construction of school buildings and rapid expansion of curricula. However, in the rush to fulfil the right to education, are children being put at risk? What attention is being given to structural safety during the construction of new school facilities? The growing consensus among stakeholders is that public school infrastructure in developing countries worldwide is particularly susceptible to natural hazards. This highlights a compelling need for developing and implementing effective, integrated, and ‘ground-real’ strategies for assessing and radically improving the safety and resilience of schools across those countries. To this aim, the paper explores two main issues: effectiveness at scale and the relevance of multiple hazard effects on the resilience of school infrastructure. Specifically, the paper first discusses the challenges associated with the World Bank Global Program for Safer School (GPSS) and the development of its Global Library of School Infrastructure (GLOSI), highlighting the issues associated with producing a tool which can be effective at scale and support nationwide risk models for school infrastructure across the world, so that fairness and relevance of investment can be achieved. This is followed by the illustration of a number of specific tools developed by the authors to expand the risk prioritization procedures used for seismic hazard, to other hazards such as flood and windstorm and to quantify the reduction in seismic fragility obtained by implementing specific strengthening strategies. Rapid visual survey forms, a mobile app, a multi-hazard risk prioritization ranking, and numerical fragility relationships are presented and their application discussed in relation to a case study in the Philippines. The proposed tools represent a first step toward a detailed multi-hazard risk and resilience assessment framework of school infrastructure. The aim is to allow stakeholders and decision-makers to quickly identify the most vulnerable structures among the surveyed stock, to guide more detailed data collection campaigns and structural assessment procedures, such as analytical vulnerability approaches, and ultimately to plan further retrofitting/strengthening measures or, if necessary, school replacement/relocation

    Seismic Vulnerability Assessment of Priority Cultural Heritage Structures in the Philippines

    Get PDF
    At the end of 2013 two catastrophic events occurred in the Philippines: the M 7.2 earthquake in Bohol and the strongest ever recorded Typhoon Haiyan, causing destruction across the islands of Cebu, Bohol and the Visayas region. These events raised the need to carry out a multi-hazard risk assessment of heritage buildings, many of which were irretrievably lost in the disasters. Philippines’ Department of Tourism engaged ARS Progetti S.P.A., Rome, Italy, and the Center for Conservation of Cultural Property and Environment in the Tropics (CCCPET), University of Sto. Tomas, Manila, to undertake the “Assessment of the Multi-Hazard Vulnerability of Priority Cultural Heritage Structures in the Philippines”, with experts from University College London, UK, and De La Salle University. The main objective of the project was to reduce the vulnerability of cultural heritage structures to multiple natural hazards, including earthquake, typhoon, flood, by: (i) prioritizing of specific structures based on hazard maps and historical records; (ii) assessing their vulnerability; and (iii) recommending options to mitigate the impacts on them. The paper presents the methodology introduced to determine the seismic risk these heritage buildings are exposed to. All the selected cultural heritage structures are under the jurisdiction of the National Museum Commission of Philippines and of the National Commission for Culture and Arts

    A COMPUTER-AIDED SEMI-QUANTITATIVE SEISMIC RISK ASSESSMENT TOOL FOR SAFE SCHOOL BUILDINGS

    Get PDF
    The Thirteenth East Asia-Pacific Conference on Structural Engineering and Construction (EASEC-13), September 11-13, 2013, Sapporo, Japan

    The level of compliance to lifestyle modification of patients diagnosed with diabetes mellitus type 2

    No full text
    The study utilized the descriptive non-experimental quantitative research design. The information was gathered from the patients with diabetes mellitus type 2 who were currently managed at the De La Salle University Medical Center Diabetes Center and clinics for diabetic patients. Purposive and convenience sampling methods were used in the study. Data was gathered using a self-made questionnaire and was analysed using frequency, percentage, t-test, and Analysis of Variance (ANOVA). Majority of the respondents were female, age 61 years old and above, were able to finish college, married, dependent to a family member and who had diabetes mellitus type 2 for 6 years and above. The respondents with diabetes mellitus type 2 were moderately compliant to lifestyle modifications. There was no significant difference in the level of compliance to lifestyle modification of patients diagnosed with diabetes mellitus type 2 when they were grouped according to age, duration of disease, educational status, employment status and marital status. On the other hand, there was a significant difference in their level of compliance when grouped according to gender

    A multi-hazard risk prioritisation framework for cultural heritage assets

    Get PDF
    Multi-hazard risk assessment of building portfolios is of primary importance in natural-hazard-prone regions, particularly for the prioritisation of disaster risk reduction and resilience-enhancing strategies. In this context, cultural heritage assets require special consideration because of their high vulnerability to natural hazards – due to ageing and types of construction – and their strong links with communities from both an economic and a historical–sociocultural perspective. This paper introduces a multi-hazard risk prioritisation framework specifically developed for cultural heritage assets. The proposed framework relies on a multilevel rapid-visual-survey (RVS) form for the multi-hazard exposure data collection and risk prioritisation of case-study assets. Because of the multilevel architecture of the proposed RVS form, based on three levels of refinement and information, an increasing degree of accuracy can be achieved in the estimation of structural vulnerability and, ultimately, structural risk of the considered assets. At the lowest level of refinement, the collected data are used for the computation of seismic-risk and wind-risk prioritisation indices, specifically calibrated in this study for cultural heritage assets with various structural and non-structural features. The resulting indices are then combined into a unique multi-hazard risk prioritisation index in which the intangible value of cultural heritage assets is also considered. This is achieved by defining a score expressing the cultural significance of the asset. The analytic hierarchy process is extensively used throughout the study to reduce the subjectivity involved in the framework, thus obtaining a simplified yet robust approach which can be adapted to different building typologies. The proposed framework is applied to 25 heritage buildings in Iloilo City, Philippines, for which innovative, non-invasive techniques and tools for improved surveying have also been tested. Thermal and omnidirectional cameras have helped in the collection of structural data, together with drones for the inspection of roofs. Results of the study are presented and critically discussed, highlighting advantages and drawbacks of the use of new technologies in this field

    A multi-hazard risk prioritisation framework for cultural heritage assets

    No full text
    Multi-hazard risk assessment of building portfolios is of primary importance in natural-hazard-prone regions, particularly for the prioritisation of disaster risk reduction and resilience-enhancing strategies. In this context, cultural heritage assets require special consideration because of their high vulnerability to natural hazards-due to ageing and types of construction-and their strong links with communities from both an economic and a historical-sociocultural perspective. This paper introduces a multi-hazard risk prioritisation framework specifically developed for cultural heritage assets. The proposed framework relies on a multilevel rapid-visual-survey (RVS) form for the multi-hazard exposure data collection and risk prioritisation of case-study assets. Because of the multilevel architecture of the proposed RVS form, based on three levels of refinement and information, an increasing degree of accuracy can be achieved in the estimation of structural vulnerability and, ultimately, structural risk of the considered assets. At the lowest level of refinement, the collected data are used for the computation of seismic-risk and wind-risk prioritisation indices, specifically calibrated in this study for cultural heritage assets with various structural and non-structural features. The resulting indices are then combined into a unique multi-hazard risk prioritisation index in which the intangible value of cultural heritage assets is also considered. This is achieved by defining a score expressing the cultural significance of the asset. The analytic hierarchy process is extensively used throughout the study to reduce the subjectivity involved in the framework, thus obtaining a simplified yet robust approach which can be adapted to different building typologies. The proposed framework is applied to 25 heritage buildings in Iloilo City, Philippines, for which innovative, non-invasive techniques and tools for improved surveying have also been tested. Thermal and omnidirectional cameras have helped in the collection of structural data, together with drones for the inspection of roofs. Results of the study are presented and critically discussed, highlighting advantages and drawbacks of the use of new technologies in this field. © 2020 Georg Thieme Verlag. All rights reserved
    corecore