21 research outputs found

    Heat transfer mechanisms in bubbly Rayleigh-Benard convection

    Get PDF
    The heat transfer mechanism in Rayleigh-Benard convection in a liquid with a mean temperature close to its boiling point is studied through numerical simulations with point-like vapor bubbles, which are allowed to grow or shrink through evaporation and condensation and which act back on the flow both thermally and mechanically. It is shown that the effect of the bubbles is strongly dependent on the ratio of the sensible heat to the latent heat as embodied in the Jacob number Ja. For very small Ja the bubbles stabilize the flow by absorbing heat in the warmer regions and releasing it in the colder regions. With an increase in Ja, the added buoyancy due to the bubble growth destabilizes the flow with respect to single-phase convection and considerably increases the Nusselt number.Comment: 11 pages, 14 figure

    A strategy to control industrial plants in the spirit of Industry 4.0 tested on a fluidic system

    Get PDF
    <w:PermStart w:id="667698911" w:edGrp="everyone"/>The goal of the paper is to propose a strategy of automating the control of wide spectrum industrial processes plants in the spirit of Industry 4.0. The strategy is based on the creation of a virtual simulator of the operation of the plants involved in the process. Through the digitization of the operational data sheets of the various components, the simulator is able to provide the reference values of the process control parameters to be compared with their actual values, in order to decide the direct inspection and/or the operational intervention on critical components before a possible failure. As example, a simple fluidic thrust plant has been considered, which a mathematical model (simulator) for its optimal operating conditions has been formulated for, by using the digitalized real operational data sheets of its components. The simple thrust system considered consists of a centrifugal pump driven by a three-phase electric motor, an inverter to regulate the rotation of the motor and a proportional valve that simulates the external load acting on the pump.As results, the operational data sheets and principal characteristics of the pump have been reproduced by means of the simulator here developed, showing a very good agreement.</p

    Design of a non-invasive sensing system for diagnosing gastric disorders

    Get PDF
    Gastric disorders are widely spread among the population of any age. At the moment, the diagnosis is made by using invasive systems that cause several side effects. The present manuscript proposes an innovative non-invasive sensing system for diagnosing gastric dysfunctions. The Electro-GastroGraphy (EGG) technique is used to record myoelectrical signals of stomach activities. Although EGG technique is well known for a long time, several issues concerning the signal processing and the definition of suitable diagnostic criteria are still unresolved. So, EGG is to this day a trial practice. The authors want to overcome the current limitations of the technique and improve its relevance. To this purpose, a smart EGG sensing system has been designed to non-invasively diagnose gastric disorders. In detail, the system records the gastric slow waves by means of skin surface electrodes placed in the epigastric area. Cutaneous myoelectrical signals are so acquired from the body surface in proximity of stomach. Electro-gastrographic record is then processed. According to the diagnostic model designed from the authors, the system estimates specific diagnostic parameters in time and frequency domains. It uses Discrete Wavelet Transform to obtain power spectral density diagrams. The frequency and power of the EGG waveform and the dominant frequency components are so analyzed. The defined diagnostic parameters are put in comparison with the reference values of a normal EGG in order to estimate the presence of gastric pathologies by the analysis of arrhythmias (tachygastria, bradygastria and irregular rhythm). The paper aims to describe the design of the system and of the arrhythmias detection algorithm. Prototype development and experimental data will be presented in future works. Preliminary results show an interesting relevance of the suggested technique so that it can be considered as a promising non-invasive tool for diagnosing gastrointestinal motility disorders

    Multiphase Rayleigh-BĂ©nard convection

    No full text
    Numerical simulations of two-phase Rayleigh-BĂ©nard convection in a cylindrical cell with particles or vapor bubbles suspended in the fluid are described. The particles or bubbles are modeled as points, the Rayleigh number is 2Ă—106 and the fluids considered are air, for the particle case, and saturated water for bubbles. It is shown that the presence of a second phase has a profound effect on the flow and heat transfer in the cell. The heat capacity of the particles and the latent heat of the liquid are used, in dimensionless form, as control parameters to modulate these effects. It is shown that, as these parameters are varied, the nature of the flow in the cell changes substantially, in some cases with adverse and in others beneficial effects on the Nusselt number. By the analysis of several aspects of the numerical results, a physical discussion of several mechanisms is provided

    Wind Reversal in Bubbly Natural Convection

    No full text
    The multi-phase Rayleigh–Bènard convection has been weakly investigated, even though it plays a leading role in the theoretical and applied physics of the heat transfer enhancement. For the case of moderate turbulent convection, a rather unexpected result is an unusual kind of wind reversal, in the sense that the fluid is found to be strongly influenced by the bubbles, whereas the bubbles themselves appear to be little affected by the fluid, despite the relative smallness of the Stokes numbers. The wind reversal induced by the bubbles dispersed in the fluid is a new and remarkable phenomenon in multi-phase flows that provides further perspectives in understanding the complex physics leading the enhancement of thermal convection. For this reason, the fundamental research proposed in this paper aimed to identify a space of control parameters and the physical mechanisms responsible for the wind reversal induced by dispersed bubbles in a confined convective flow. The strength of the following description lies in an innovative numerical approach, based on the multi-scale physics induced by the coupling of the local thermal and mechanical mechanisms arising between each bubble and the surrounding fluid. The continuous phase has been solved numerically using the direct numerical simulation (DNS) technique and each bubble has been tracked by means of a particle Lagrangian model

    Buoyancy effect on the flow pattern and the thermal performance of an array of circular cylinders

    No full text
    In this paper, we found, by means of numerical simulations, a transition in the oscillatory character of the flow field for a particular combination of buoyancy and spacing in an array of six circular cylinders at a Reynolds number of 100 and Prandtl number of 0.7. The cylinders are isothermal and they are aligned with the earth acceleration (g). According to the array orientation, an aiding or an opposing buoyancy is considered. The effect of natural convection with respect to the forced convection is modulated with the Richardson number, Ri, ranging between-1 and 1. Two values of center-to-center spacing (s=3.6d-4d) are considered. The effects of buoyancy and spacing on the flow pattern in the near and far field are described. Several transitions in the flow patterns are found, and a parametric analysis of the dependence of the force coefficients and Nusselt number with respect to the Richardson number is reported. For Ri=-1, the change of spacing ratio from 3.6 to 4 induces a transition in the standard deviation of the force coefficients and heat flux. In fact, the transition occurs due to rearrangement of the nearfield flow in a more ordered wake pattern. Therefore, attention is focused on the influence of geometrical and buoyancy parameters on the heat and momentum exchange and their fluctuations. The available heat exchange models for cylinders array provide a not accurate prediction of the Nusselt number in the cases here studie

    Effects of particle settling on Rayleigh-BĂ©nard convection

    No full text
    corecore