5,385 research outputs found

    In situ visualization of Ni-Nb bulk metallic glasses phase transition

    Full text link
    We report the results of the Ni-based bulk metallic glass structural evolution and crystallization behavior in situ investigation. The X-ray diffraction (XRD), transmission electron microscopy (TEM), nano-beam diffraction (NBD), differential scanning calorimetry (DSC), radial distribution function (RDF) and scanning probe microscopy/spectroscopy (STM/STS) techniques were applied to analyze the structure and electronic properties of Ni63.5Nb36.5 glasses before and after crystallization. It was proved that partial surface crystallization of Ni63.5Nb36.5 can occur at the temperature lower than for the full sample crystallization. According to our STM measurements the primary crystallization is originally starting with the Ni3Nb phase formation. It was shown that surface crystallization drastically differs from the bulk crystallization due to the possible surface reconstruction. The mechanism of Ni63.5Nb36.5 glass alloy 2D-crystallization was suggested, which corresponds to the local metastable (3x3)-Ni(111) surface phase formation. The possibility of different surface nano-structures development by the annealing of the originally glassy alloy in ultra high vacuum at the temperature lower, than the crystallization temperature was shown. The increase of mean square surface roughness parameter Rq while moving from glassy to fully crystallized state can be caused by concurrent growth of Ni3Nb and Ni6Nb7 bulk phases. The simple empirical model for the estimation of Ni63.5Nb36.5 cluster size was suggested, and the obtained values (7.64 A, 8.08 A) are in good agreement with STM measurements data (8 A-10 A)

    Tuning of tunneling current noise spectra singularities by localized states charging

    Full text link
    We report the results of theoretical investigations of tunneling current noise spectra in a wide range of applied bias voltage. Localized states of individual impurity atoms play an important role in tunneling current noise formation. It was found that switching "on" and "off" of Coulomb interaction of conduction electrons with two charged localized states results in power law singularity of low-frequency tunneling current noise spectrum (1/fα1/f^{\alpha}) and also results on high frequency component of tunneling current spectra (singular peaks appear).Comment: 7 pages, 4 figure

    Hybrid MHD/PIC simulation of a metallic gas-puff z pinch implosion

    Full text link
    We present the hybrid MHD/PIC simulations of the time evolution of a bismuth metallic gas-puff z pinch in external axial magnetic field (AMF). Recent experiments with IMRI-5 generator (450 kA, 450 ns) [1] show the certain effect of an axial magnetic field on radiation energy produced during z pinch implosion. In order to perform the numerical simulation of gas puff z pinch a hybrid model was developed. The hybrid model treats the electrons as a massless fluid and ions as macroparticles. The macroparticle dynamic is calculated with the use of PIC method. Ion-ion Coulomb collision is considered with the use of MC method. The radiation transfer of bismuth plasma was accounted in the framework of P1 method. The interelectrode gap pumping by plasma of 8 μs 80 kA bismuth arc with the following plasma implosion by 450 kA / 450 ns current pulse in different external AMF was modelled. The obtained results are in a reasonable agreement with the experimental results. © Published under licence by IOP Publishing Ltd.The work was supported by Russian Science Foundation (project No. 16-19-10142)

    Numerical simulation of electrical explosions in megagauss magnetic fields

    Get PDF
    The paper reports on a magnetohydrodynamic simulation of electrical explosions of conductors in megagauss magnetic fields. It is shown that in a plane geometry, the time of plasma formation at the surface of a metal conductor does not depend on the rate of rise of the magnetic field and is determined by the properties of the metal; the absolute values of the magnetic field at which plasma is formed are 5±0.25 MGs for copper, 4.25±0.2 MGs for tungsten, 3.85±0.15 MGs for aluminum, and 3.6±0.25 MGs for titanium. In cylindrical geometry, the time of plasma formation does depend on the rate of field rise

    Enhancement of efficiency in the use of light for cultivation of plants in controlled ecological systems

    Get PDF
    The problems of plant cultivation with the use of artificial lighting are related to energetics and, initially, to the lack of effective sources for photosynthesis, secondly to the necessity to supply a system with a considerable power in the form of light energy and to remove transformed thermal energy, and finally to economic considerations. These problems are solved by three ways: by the choice of effective radiation sources, design approaches, and technological methods of cultivation. Here we shall consider the first two ways
    corecore