81 research outputs found

    Transmission-electron-microscopy study of charge-stripe order in La(1.725)Sr(0.275)NiO(4)

    Full text link
    We characterize the local structure and correlations of charge stripes in La(1.725)Sr(0.275)NiO(4) using transmission-electron microscopy. We present direct evidence that the stripe modulation is indeed one-dimensional within each NiO(2) plane. Furthermore, we show that individual stripes tend to be either site-centered or bond-centered, with a bias towards the former. The spacing between stripes often fluctuates about the mean, contributing to a certain degree of frustration of the approximate body-centered stacking along the c-axis. These results confirm ideas inferred from previous neutron-diffraction measurements on doped nickelates, and demonstrate that charge-stripe order is quite different from the conventional concept of charge-density-wave order.Comment: 5 pages, 6 figures, submitted to PR

    Negotiating local versus global needs in the International Long Term Ecological Research Network's socio-ecological research agenda

    Get PDF
    Over the past decade, Long-Term Socio-Ecological Research (LTSER) has been established to better integrate social science research and societal concerns into the goals and objectives of the International Long Term Ecological Research (ILTER) network, an established global network of long-term ecological monitoring sites. The Horizon 2020 eLTER project, currently underway, includes as one of its key objectives to evaluate the performance of LTSER platforms. This article reflects part of this evaluation: Six LTSER platforms were assessed through site visits of the lead author, coupled with reflections and insights of the platform managers, who are also coauthors. We provide background for the mission and goals of LTSER, and then assess the six international LTSER platforms – Baltimore Ecosystem Study LTER, USA; Braila Islands LTSER, Romania; Cairngorms LTSER, UK; Doñana LTSER, Spain; Omora Ethnobotanical Park Cape Horn LTER, Chile; and Sierra Nevada LTSER, Spain. 
 While based on a strong theoretical foundation in socio-ecological research, there has been a steep learning curve for scientists to apply the concept in practice at LTSER platforms. Key aspects of LTSER platforms have proven challenging, including management, interdisciplinary integration, and stakeholder collaboration. We characterize the tensions between top-down desires for network harmonization, bottom-up demands such as local policy relevance, and platform-level constraints such as time and budget. We discuss challenges, such as local context dominating the character of LTSER platforms, and the fact that scientists are disincentivized from engaging in transdisciplinary work. However, we also show positive impacts that have been achieved, including contributions to policy, land-use planning, and natural resource management. Overall, we conclude that while the international network offers important advantages to its members, a better balance between local and global goals could be achieved, and members may need to temper their expectations of what the network can and cannot offer at the local level

    Doping dependence of the resonance peak and incommensuration in high-TcT_{c} superconductors

    Full text link
    The doping and frequency evolutions of the incommensurate spin response and the resonance mode are studied based on the scenario of the Fermi surface topology. We use the slave-boson mean-field approach to the ttJt-t^{\prime}-J model and including the antiferromagnetic fluctuation correction in the random-phase approximation. We find that the equality between the incommensurability and the hole concentration is reproduced at low frequencies in the underdoped regime. This equality observed in experiments was explained {\it only} based on the stripe model before. We also obtain the downward dispersion for the spin response and predict its doping dependence for further experimental testing, as well as a proportionality between the low-energy incommensurability and the resonance energy. Our results suggest a common origin for the incommensuration and the resonance peak based on the Fermi surface topology and the d-wave symmetry.Comment: 5 pages, 4 PS figure

    DDW Order and its Role in the Phase Diagram of Extended Hubbard Models

    Full text link
    We show in a mean-field calculation that phase diagrams remarkably similar to those recently proposed for the cuprates arise in simple microscopic models of interacting electrons near half-filling. The models are extended Hubbard models with nearest neighbor interaction and correlated hopping. The underdoped region of the phase diagram features dx2y2d_{{x^2}-{y^2}} density-wave (DDW) order. In a certain regime of temperature and doping, DDW order coexists with antiferromagnetic (AF) order. For larger doping, it coexists with dx2y2d_{{x^2}-{y^2}} superconductivity (DSC). While phase diagrams of this form are robust, they are not inevitable. For other reasonable values of the coupling constants, drastically different phase diagrams are obtained. We comment on implications for the cuprates.Comment: 7 pages, 3 figure

    Big, Fast Vortices in the d-RVB theory of High Temperature Superconductivity

    Full text link
    The effect of proximity to a Mott insulating phase on the superflow properties of a d-wave superconductor is studied using the slave boson-U(1) gauge theory model. The model has two limits corresponding to superconductivity emerging either out of a 'renormalized fermi liquid' or out of a non-fermi-liquid regime. Three crucial physical parameters are identified: the size of the vortex \textit{as determined from the supercurrent it induces;} the coupling of the superflow to the quasiparticles and the 'nondissipative time derivative' term. As the Mott phase is approached, the core size as defined from the supercurrent diverges, the coupling between superflow and quasiparticles vanishes, and the magnitude of the nondissipative time derivative dramatically increases. The dissipation due to a moving vortex is found to vary as the third power of the doping. The upper critical field and the size of the critical regime in which paraconductivity may be observed are estimated, and found to be controlled by the supercurrent length scale

    Pair Phase Fluctuations and the Pseudogap

    Full text link
    The single-particle density of states and the tunneling conductance are studied for a two-dimensional BCS-like Hamiltonian with a d_{x^2-y^2}-gap and phase fluctuations. The latter are treated by a classical Monte Carlo simulation of an XY model. Comparison of our results with recent scanning tunneling spectra of Bi-based high-T_c cuprates supports the idea that the pseudogap behavior observed in these experiments can be understood as arising from phase fluctuations of a d_{x^2-y^2} pairing gap whose amplitude forms on an energy scale set by T_c^{MF} well above the actual superconducting transition.Comment: 5 pages, 6 eps-figure

    Evaluating transdisciplinary science to open research-implementation spaces in European social-ecological systems

    Get PDF
    Researchers in multiple, related fields that address complex social and environmental challenges, have shown ongoing enthusiasm for applying transdisciplinary social-ecological systems (SES) research to promote sustainability. However, few studies have evaluated the effectiveness of SES approach, assessed its achievements, and identified challenges to its implementation toward knowledge production for environmental conservation. We report the results of a qualitative, participatory evaluation of several SES projects across Europe using an evaluation methodology tailored to transdisciplinary projects. We conducted 66 stakeholder interviews at four designated Long-Term Socio-ecological Research (LTSER) platforms – Danube Delta and Braila Island (Romania); Cairngorms (Scotland); and Doñana (Spain). Using qualitative analysis, we synthesized data from interviews and then returned to the sites to present findings to stakeholders in focus group discussions in order to incorporate their feedback into conclusions. We conclude that although particular scientists at each platform have taken on entrepreneurial roles to operationalize transdisciplinary science, a business-as-usual attitude tends to dominate institutions, limiting meaningful progress toward transdisciplinary objectives, including: integration of social science research, giving non-researcher stakeholders a more meaningful role in advancing relevant research, and improving knowledge exchange among different stakeholder groups, among other issues. While we found that all the components of transdisciplinary SES research exist at the sites, there is no overarching strategy to link long-term planning and funding, knowledge integration, and priority-setting with stakeholders to ensure the relevance of research for policy and practice. We conclude with reflections about implementing our evaluation methodology, and a call for periodic, participatory evaluation into the future

    QED3 theory of underdoped high temperature superconductors

    Full text link
    Low-energy theory of d-wave quasiparticles coupled to fluctuating vortex loops that describes the loss of phase coherence in a two dimensional d-wave superconductor at T=0 is derived. The theory has the form of 2+1 dimensional quantum electrodynamics (QED3), and is proposed as an effective description of the T=0 superconductor-insulator transition in underdoped cuprates. The coupling constant ("charge") in this theory is proportional to the dual order parameter of the XY model, which is assumed to be describing the quantum fluctuations of the phase of the superconducting order parameter. The principal result is that the destruction of phase coherence in d-wave superconductors typically, and immediately, leads to antiferromagnetism. The transition can be understood in terms of the spontaneous breaking of an approximate "chiral" SU(2) symmetry, which may be discerned at low enough energies in the standard d-wave superconductor. The mechanism of the symmetry breaking is analogous to the dynamical mass generation in the QED3, with the "mass" here being proportional to staggered magnetization. Other insulating phases that break chiral symmetry include the translationally invariant "d+ip" and "d+is" insulators, and various one dimensional charge-density and spin-density waves. The theory offers an explanation for the rounded d-wave-like dispersion seen in ARPES experiments on Ca2CuO2Cl2 (F. Ronning et. al., Science 282, 2067 (1998)).Comment: Revtex, 20 pages, 5 figures; this is a much extended follow-up to the Phys. Rev. Lett. vol.88, 047006 (2002) (cond-mat/0110188); improved presentation, many additional explanations, comments, and references added, sec. IV rewritten. Final version, to appear in Phys. Rev.

    Dispersion of Ordered Stripe Phases in the Cuprates

    Full text link
    A phase separation model is presented for the stripe phase of the cuprates, which allows the doping dependence of the photoemission spectra to be calculated. The idealized limit of a well-ordered array of magnetic and charged stripes is analyzed, including effects of long-range Coulomb repulsion. Remarkably, down to the limit of two-cell wide stripes, the dispersion can be interpreted as essentially a superposition of the two end-phase dispersions, with superposed minigaps associated with the lattice periodicity. The largest minigap falls near the Fermi level; it can be enhanced by proximity to a (bulk) Van Hove singularity. The calculated spectra are dominated by two features -- this charge stripe minigap plus the magnetic stripe Hubbard gap. There is a strong correlation between these two features and the experimental photoemission results of a two-peak dispersion in La2x_{2-x}Srx_xCuO4_4, and the peak-dip-hump spectra in Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}. The differences are suggestive of the role of increasing stripe fluctuations. The 1/8 anomaly is associated with a quantum critical point, here expressed as a percolation-like crossover. A model is proposed for the limiting minority magnetic phase as an isolated two-leg ladder.Comment: 24 pages, 26 PS figure

    Spectral and transport properties of doped Mott-Hubbard systems with incommensurate magnetic order

    Full text link
    We present spectral and optical properties of the Hubbard model on a two-dimensional square lattice using a generalization of dynamical mean-field theory to magnetic states in finite dimension. The self-energy includes the effect of spin fluctuations and screening of the Coulomb interaction due to particle-particle scattering. At half-filling the quasiparticles reduce the width of the Mott-Hubbard `gap' and have dispersions and spectral weights that agree remarkably well with quantum Monte Carlo and exact diagonalization calculations. Away from half-filling we consider incommensurate magnetic order with a varying local spin direction, and derive the photoemission and optical spectra. The incommensurate magnetic order leads to a pseudogap which opens at the Fermi energy and coexists with a large Mott-Hubbard gap. The quasiparticle states survive in the doped systems, but their dispersion is modified with the doping and a rigid band picture does not apply. Spectral weight in the optical conductivity is transferred to lower energies and the Drude weight increases linearly with increasing doping. We show that incommensurate magnetic order leads also to mid-gap states in the optical spectra and to decreased scattering rates in the transport processes, in qualitative agreement with the experimental observations in doped systems. The gradual disappearence of the spiral magnetic order and the vanishing pseudogap with increasing temperature is found to be responsible for the linear resistivity. We discuss the possible reasons why these results may only partially explain the features observed in the optical spectra of high temperature superconductors.Comment: 22 pages, 18 figure
    corecore