3 research outputs found

    Pluripotentne matične stanice u regenerativnoj medicini

    No full text
    Pluripotent stem cells are cells that can differentiate into any type of cell, making them promising candidates for cell replacement therapies and tissue/organ engineering in regenerative medicine. Because of their ability to self-renew and differentiate into multiple lineages, pluripotent stem cells are ideal for regenerative medicine, tissue repair, and gene therapy for incurable diseases such as cardiac and spinal cord injuries, as well as neurological and endocrine disorders. There are two types of pluripotent stem cells, cells isolated from the inner cell mass of the blastocyst, referred to as embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs), derived by reprogramming adult differentiated cells. iPSCs are a useful resource for personalized regenerative medicine since they may be created from any patient in need for replacement of diseased or damaged tissues. Furthermore, reprogramming technology has become a powerful tool for studying cell fate and modeling human diseases, significantly increasing the prospect of discovering new medications and strategies for treating life-threatening diseases. As human iPSCs can be made from a patient' s own somatic cells, their production does not necessitate the destruction of human embryos, which avoids ethical issues associated with embryonic stem cells. There is a growing demand for stem cell banking and standardization of the process of obtaining pluripotent stem cells. A global goal of research in the field of regenerative medicine is to increase the quality of the reprogramming process required for induced pluripotent stem cells and to increase their yield. Roadblocks to successful translation of such technology into clinical therapy must still be eradicated, and a great deal of effort is being put into making grafts prepared from pluripotent stem cells clinically safe for patients, especially in regard of their unwanted tumorigenicity potential.Pluripotentne matične stanice mogu se diferencirati u bilo koju stanicu, Å”to ih čini obećavajućim opcijama za regenerativnu medicinu, uključujući nadomjesnu terapiju stanicama, tkivno inženjerstvo i proizvodnju organa. Zbog svoje sposobnosti samoobnavljanja i diferencijacije u sve stanične loze, pluripotentna matična stanica obećava nove terapije u liječenju teÅ”ko izlječivih bolesti kao Å”to su kardioloÅ”ke bolesti, bolesti leđne moždine, neuroloÅ”ke bolesti i bolesti endokrinog sustava. Postoje dvije vrste pluripotentnih matičnih stanica, stanice izolirane iz embrioblasta blastociste, koje se nazivaju embrionalne matične stanice (ESC), i inducirane pluripotentne matične stanice (iPSC), izvedene reprogramiranjem diferenciranih stanica odraslih. iPSC su koristan resurs za personaliziranu regenerativnu medicinu jer se mogu proizvesti od stanica bilo kojeg pacijenta kojem je potrebna zamjena oboljelih ili oÅ”tećenih tkiva. Nadalje, tehnologija reprogramiranja postala je moćan alat za proučavanje sudbine stanica i modeliranje ljudskih bolesti, značajno povećavajući mogućnost otkrivanja novih lijekova i strategija za liječenje bolesti opasnih po život. Sve je veća potreba za bankarstvom matičnih stanica i standardizacijom procesa dobivanja pluripotentnih matičnih stanica. Globalni cilj istraživanja u području regenerativne medicine je povećanje kvalitete procesa reprogramiranja potrebnog za inducirane pluripotentne matične stanice i povećanje njihovog prinosa. Budući da se ljudske iPSC mogu izraditi iz vlastitih somatskih stanica pacijenta, njihova proizvodnja ne zahtijeva uniÅ”tenje ljudskih embrija, čime se izbjegavaju etička pitanja povezana s embrionalnim matičnim stanicama. Prepreke uspjeÅ”noj translaciji takve tehnologije u kliničku terapiju joÅ” uvijek se moraju preći, pa se ulažu veliki napori u izradu presadaka pripremljenih od pluripotentnih matičnih stanica, klinički sigurnih za pacijente, a posebno u dijelu koji se odnosi na njihov neželjeni tumorigeni potencijal

    Pluripotentne matične stanice u regenerativnoj medicini

    No full text
    Pluripotent stem cells are cells that can differentiate into any type of cell, making them promising candidates for cell replacement therapies and tissue/organ engineering in regenerative medicine. Because of their ability to self-renew and differentiate into multiple lineages, pluripotent stem cells are ideal for regenerative medicine, tissue repair, and gene therapy for incurable diseases such as cardiac and spinal cord injuries, as well as neurological and endocrine disorders. There are two types of pluripotent stem cells, cells isolated from the inner cell mass of the blastocyst, referred to as embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs), derived by reprogramming adult differentiated cells. iPSCs are a useful resource for personalized regenerative medicine since they may be created from any patient in need for replacement of diseased or damaged tissues. Furthermore, reprogramming technology has become a powerful tool for studying cell fate and modeling human diseases, significantly increasing the prospect of discovering new medications and strategies for treating life-threatening diseases. As human iPSCs can be made from a patient' s own somatic cells, their production does not necessitate the destruction of human embryos, which avoids ethical issues associated with embryonic stem cells. There is a growing demand for stem cell banking and standardization of the process of obtaining pluripotent stem cells. A global goal of research in the field of regenerative medicine is to increase the quality of the reprogramming process required for induced pluripotent stem cells and to increase their yield. Roadblocks to successful translation of such technology into clinical therapy must still be eradicated, and a great deal of effort is being put into making grafts prepared from pluripotent stem cells clinically safe for patients, especially in regard of their unwanted tumorigenicity potential.Pluripotentne matične stanice mogu se diferencirati u bilo koju stanicu, Å”to ih čini obećavajućim opcijama za regenerativnu medicinu, uključujući nadomjesnu terapiju stanicama, tkivno inženjerstvo i proizvodnju organa. Zbog svoje sposobnosti samoobnavljanja i diferencijacije u sve stanične loze, pluripotentna matična stanica obećava nove terapije u liječenju teÅ”ko izlječivih bolesti kao Å”to su kardioloÅ”ke bolesti, bolesti leđne moždine, neuroloÅ”ke bolesti i bolesti endokrinog sustava. Postoje dvije vrste pluripotentnih matičnih stanica, stanice izolirane iz embrioblasta blastociste, koje se nazivaju embrionalne matične stanice (ESC), i inducirane pluripotentne matične stanice (iPSC), izvedene reprogramiranjem diferenciranih stanica odraslih. iPSC su koristan resurs za personaliziranu regenerativnu medicinu jer se mogu proizvesti od stanica bilo kojeg pacijenta kojem je potrebna zamjena oboljelih ili oÅ”tećenih tkiva. Nadalje, tehnologija reprogramiranja postala je moćan alat za proučavanje sudbine stanica i modeliranje ljudskih bolesti, značajno povećavajući mogućnost otkrivanja novih lijekova i strategija za liječenje bolesti opasnih po život. Sve je veća potreba za bankarstvom matičnih stanica i standardizacijom procesa dobivanja pluripotentnih matičnih stanica. Globalni cilj istraživanja u području regenerativne medicine je povećanje kvalitete procesa reprogramiranja potrebnog za inducirane pluripotentne matične stanice i povećanje njihovog prinosa. Budući da se ljudske iPSC mogu izraditi iz vlastitih somatskih stanica pacijenta, njihova proizvodnja ne zahtijeva uniÅ”tenje ljudskih embrija, čime se izbjegavaju etička pitanja povezana s embrionalnim matičnim stanicama. Prepreke uspjeÅ”noj translaciji takve tehnologije u kliničku terapiju joÅ” uvijek se moraju preći, pa se ulažu veliki napori u izradu presadaka pripremljenih od pluripotentnih matičnih stanica, klinički sigurnih za pacijente, a posebno u dijelu koji se odnosi na njihov neželjeni tumorigeni potencijal

    Robertā€™s Intragastric Alcohol-Induced Gastric Lesion Model as an Escalated General Peripheral and Central Syndrome, Counteracted by the Stable Gastric Pentadecapeptide BPC 157

    No full text
    We redefined Robertā€™s prototypical cytoprotection model, namely the intragastric administration of 96% alcohol in order to generate a general peripheral and central syndrome similar to that which occurs when major central or peripheral veins are occluded in animal models. With this redefinition, we used Robertā€™s model to examine the cytoprotective effects of the stable gastric pentadecapeptide BPC 157. The intragastric administration of alcohol induced gastric lesions, intracranial (superior sagittal sinus) hypertension, severe brain swelling and lesions, portal and vena caval hypertension, aortal hypotension, severe thrombosis, inferior vena cava and superior mesenteric vein congestion, azygos vein failure (as a failed collateral pathway), electrocardiogram disturbances, and heart, lung, liver and kidney lesions. The use of BPC 157 therapy (10 Āµg/kg or 10 ng/kg given intraperitoneally 1 min after alcohol) counteracted these deficits rapidly. Specifically, BPC 157 reversed brain swelling and superior mesenteric vein and inferior vena caval congestion, and helped the azygos vein to recover, which improved the collateral blood flow pathway. Microscopically, BPC 157 counteracted brain (i.e., intracerebral hemorrhage with degenerative changes of cerebral and cerebellar neurons), heart (acute subendocardial infarct), lung (parenchymal hemorrhage), liver (congestion), kidney (congestion) and gastrointestinal (epithelium loss, hemorrhagic gastritis) lesions. In addition, this may have taken place along with the activation of specific molecular pathways. In conclusion, these findings clarify and extend the theory of cytoprotection, offer an approach to its practical application, and establish BPC 157 as a prospective cytoprotective treatment
    corecore