3 research outputs found

    Small-scale land use change modelling using transient groundwater levels and salinities as driving factors – An example from a sub-catchment of Australia’s Murray-Darling Basin

    Get PDF
    This is the final version. Available from Elsevier via the DOI in this record. Data availability: Data will be made available on requestAlthough land-use change (LUC) can have detrimental environmental impacts, very few studies have explored the idea that changes in groundwater conditions and water management directly influence LU. This study models how water management policies, groundwater quality (as salinity) and availability drive and impact LUC at a small scale. The Angas Bremer (AB) irrigation district (Murray-Darling Basin, Australia) was used as a case study because it provides a rare example of complex and transient groundwater management. The key questions raised were (i) how has LU, more specifically agricultural practices, changed groundwater quality and availability; (ii) how have groundwater conditions (salinity and levels) subsequently driven LUC and influenced policy changes; and, (iii) how have groundwater conditions improved as a consequence of LU and policy changes. Using the newly-developed Patch-generating LU Simulation (PLUS) model, LUC was simulated and driving factors analysed for the period 1949–2014. To the best of our knowledge, PLUS was able to successfully model groundwater-driven LUC at a small, local scale for the first time in the international literature. The results show that (i) LUC driving factors depend on groundwater conditions and extent of policy in place, and (ii) changes in groundwater salinity and levels led to new water management policy, which in turn dictated LU changes where more water-efficient crops were favoured. LUC likely contributed to a recovery of groundwater levels and low salinity, i.e. groundwater improved to pre-development conditions. Groundwater-related driving factors are responsible for 5–12% depending on agricultural land use and phase.Engineering and Physical Sciences Research Counci

    Human predisposition to cognitive impairment and its relation with environmental exposure to potentially toxic elements

    Get PDF
    New lines of evidence suggest that less than 10% of neurodegenerative diseases have a strict genetic aetiology and other factors may be prevalent. Environmental exposures to potentially toxic elements appear to be a risk factor for Parkinson’s, Alzheimer’s and sclerosis diseases. This study proposes a multidisciplinary approach combining neurosciences, psychology and environmental sciences while integrating socio-economic, neuropsychological, environmental and health data. We present the preliminary results of a neuropsychological assessment carried out in elderly residents of the industrial city of Estarreja. A battery of cognitive tests and a personal questionnaire were administered to the participants. Multivariate analysis and multiple linear regression analysis were used to identify potential relationships between the cognitive status of the participants and environmental exposure to potentially toxic elements. The results suggest a relationship between urinary PTEs levels and the incidence of cognitive disorders. They also point towards water consumption habits and profession as relevant factors of exposure. Linear regression models show that aluminium (R2 = 38%), cadmium (R2 = 11%) and zinc (R2 = 6%) are good predictors of the scores of the Mini-Mental State Examination cognitive test. Median contents (µg/l) in groundwater are above admissible levels for drinking water for aluminium (371), iron (860), manganese (250), and zinc (305). While the World Health Organization does not provide health-based reference values for aluminium, results obtained from this study suggest that it may have an important role in the cognitive status of the elderly. Urine proved to be a suitable biomarker of exposure both to elements with low and high excretion rates
    corecore