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A B S T R A C T   

Although land-use change (LUC) can have detrimental environmental impacts, very few studies have explored 
the idea that changes in groundwater conditions and water management directly influence LU. This study models 
how water management policies, groundwater quality (as salinity) and availability drive and impact LUC at a 
small scale. The Angas Bremer (AB) irrigation district (Murray-Darling Basin, Australia) was used as a case study 
because it provides a rare example of complex and transient groundwater management. The key questions raised 
were (i) how has LU, more specifically agricultural practices, changed groundwater quality and availability; (ii) 
how have groundwater conditions (salinity and levels) subsequently driven LUC and influenced policy changes; 
and, (iii) how have groundwater conditions improved as a consequence of LU and policy changes. Using the 
newly-developed Patch-generating LU Simulation (PLUS) model, LUC was simulated and driving factors analysed 
for the period 1949–2014. To the best of our knowledge, PLUS was able to successfully model groundwater- 
driven LUC at a small, local scale for the first time in the international literature. The results show that (i) 
LUC driving factors depend on groundwater conditions and extent of policy in place, and (ii) changes in 
groundwater salinity and levels led to new water management policy, which in turn dictated LU changes where 
more water-efficient crops were favoured. LUC likely contributed to a recovery of groundwater levels and low 
salinity, i.e. groundwater improved to pre-development conditions. Groundwater-related driving factors are 
responsible for 5–12% depending on agricultural land use and phase.   

1. Introduction 

By 2050, the world will face one of its greatest challenges: agricul
tural production (Elagib et al., 2019; Ayyad and Khalifa, 2021). This 
challenge is amplified by changing climate and population growth, with 
increasing competition for water and land resources, especially as 
rain-fed agriculture plays a crucial role in food supply around the world 
(Brown et al., 2011). Rain-fed agriculture is particularly vulnerable to 
droughts, an increasing phenomenon, which affects the socio-economic 
development of countries worldwide (Peters et al., 2002). Drought onset 
and end can be difficult to the determine, and the impacts may slowly 
develop affecting large areas and populations (Minucci, 2021; Ji and 
Peters, 2003). Irrigation sourced from groundwater is an effective 
method in counteracting drought impacts in rain-fed agricultural areas 

(Reshmidevi et al., 2009; Younger, 2007; Dench and Morgan, 2021). 
Though groundwater resources are deemed more resilient than surface 
water (Rust et al., 2019), they are also increasingly under threat from 
overexploitation, drought, pollution (Younger, 2007) and multi-annual 
rainfall deficits (Rust et al., 2019), which results in reduced ground
water quality and availability (Dench and Morgan, 2021). A key threat 
arising from groundwater depletion is increased groundwater salinity, 
as it (i) affects the soil structure so that infiltration and the uptake of 
water by plants becomes impeded (Younger, 2007); and, (ii) leads to a 
species-specific reduction in growth and plant productivity, as salt af
fects photosynthesis, protein synthesis, and energy and lipid metabolism 
(Parida and Das, 2005). 

Overall in the 21st century, conversion of agricultural land is driven 
by exogenous changes such as urbanisation, environmental regulations, 
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agricultural management and climatic conditions (Lambin et al., 2000; 
Zondag and Borsboom, 2009). Consequently, Land Use Change model
ling (LUCM) has emerged as a highly dynamic field of research (Veld
kamp and Lambin, 2001) and an important tool to (i) explore possible 
future LU scenarios, (ii) make LU management decisions, and (iii) 
analyse the environmental impact of LUC (Promper et al., 2014; Islam 
et al., 2018; Lourdes et al., 2011; Khan et al., 2018; Elsayed et al., 2020). 
Previous work from Luo et al. (2010), Berbero et al. (2016) and Tizora 
et al. (2018) concluded that different modelling approaches have 
different merits, with no model suitable for all cases – LUCM choice 
depends on the research question, spatial and/or temporal scale of study 
and data availability. A key challenge for LUCM is the size of the area 
modelled (Maria et al., 2014; Veldkamp and Lambin, 2001), with Ver
burg et al. (2006) arguing that further downscaling of LUCM aspects, 
such as catchment size, LU classes and management is fundamental to 
future studies. This is because downscaling provides increased detail on 
key driving factors, trends and implications of LUC. 

LUC can have a significant impact on groundwater quality and 
availability, through point and non-point pollution, overexploitation 
(Lerner and Harris, 2009) and recharge dynamics (McCallum et al., 
2010; Fu et al., 2019), which can have significant negative 
socio-economic impacts (Daneshi et al., 2021). Di et al. (2005) used a 
groundwater model to predict the impacts of LU on nitrate concentra
tions in groundwater and mapped groundwater management zones ac
cording to LU, land surface recharge, river recharge and average nitrate 
concentrations. Sheikhy Narany et al. (2017) spatially mapped patterns 
of nitrate within groundwater according to LU. Stein et al. (2010) used 
fauna and bacteria as ecological indicators for the assessment of 
groundwater quality under LUC, and Barber et al. (1996) combined GIS 
methods and groundwater models to evaluate the relationship between 
LUC and groundwater quality through concentrations of volatile organic 
compounds. Related to the impact of LUC on water quantity, Mirhosseini 
et al. (2018) investigated how LUC and land cover would impact the 
quantity of surface water resources. Shrestha et al. (2020) developed 
future scenarios of groundwater availability to assess the impact of 
future LUC on water availability within a river basin. There has been 
limited research using LUCM to assess the impact groundwater or sur
face water quality and availability has on LUC. Previous studies have 
related the impact of LUC on water quantity not the other way around 
(Barber et al., 1996; Di et al., 2005; Mirhosseini et al., 2018; Sheikhy 
Narany et al., 2017; Shrestha et al., 2020; Stein et al., 2010). However, 
Luo et al. (2010) did evaluate the suitability of LU locations by using 
logistic regression to indicate the probability of an area to be devoted to 
a single LU given seven potential driving factors, that included 
groundwater levels and quality. Driving factors are socioeconomic or 
biophysical variables that influence LU variation and demands, which 
most LUC models consider (Verburg and Veldkamp, 2002). The effect of 
policy on managing LUC is complex, and though it is recognised that 
policy plays an important role when considering driving factors of LUC 
patterns (Liu et al., 2017a, 2017b), few studies have investigated the 
direct effects of social-economic policy due to heavy data requirements 
(Zhu et al., 2010). Normally, the influence of policy is expressed through 
model constraints, such as nature reserves or other areas where LUC 
cannot take place. A study by Zhu et al. (2010) found that the imple
mentation of the new policy “Grain for Green Project (GFGP)” in 2000 
changed the dominating driving factors from 2001 to 2005, causing the 
area of cropland to decrease, and the area of grassland and forest to 
expand when compared to the previous period of 1993–2000. The re
sults implied that the LUC was driven by slope, aspect, elevation, dis
tance to road, soil types, population density in 1993–2000 until GFGP 
was implemented and became the dominant factor for 2001–2005, 
impacting LUC through reforestation and biodiversity conservation 
against urbanisation. Liu et al. (2017a, 2017b) investigated the rela
tionship between government policy and LUC, specifically the imple
mentation of the environmental policy “Returning Farmland to Forest 
Program”. The study looked at different future scenarios, and concluded 

that though government policy plays an important role as LUC driving 
factor, it is difficult to consider all policy factors involved and quantify 
them. 

This study addresses several LUCM research gaps (mentioned above 
and discussed below in more detail) using the case study of the Angas 
Bremer (AB) irrigation district, in South Australia – a small catchment 
(250 km2) at the end of the Murray-Darling Basin (MDB). The MDB 
covers 14% of Australia land mass and provides 39% of the country’s 
agricultural products, and is arguably the most challenging and impor
tant region for water management in Australia (Webster, 2019). AB’s 
history has shown complex interactions between LUC, groundwater 
quality (salinity) and availability, and groundwater management ap
proaches through changing policy, which have been qualitatively ana
lysed by Shalsi et al. (2019, 2022). This makes it an excellent case study 
to apply LUCM to quantify the temporal evolution and the complex in
teractions between LUC (especially crops), groundwater quality (in this 
work indicated as salinity) and availability, and water management 
approaches. This is unlike conventional LU studies that adopt a simpler 
approach and focus on the effect LU has on groundwater. More specif
ically, the objectives of this study are to (i) model the LUC between 1949 
and 2014 for a small catchment of 250 km2, which is rarely attempted; 
(ii) quantify the influence of driving factors on LUC; and, (iii) determine 
whether groundwater quality and/or availability drives or constrains LU 
distributions. The novelties of this study are using (i) the newly devel
oped PLUS model at a much smaller scale (250 km2) than previously 
attempted, and (ii) quantitative maps of groundwater levels and salinity 
as drivers of LUC. Ultimately, this allows us to (i) understand how LU, 
more specifically agricultural practices, changed groundwater quality 
and availability; (ii) quantify how groundwater conditions have subse
quently driven LUC and influenced policy changes; and, (iii) discuss how 
groundwater conditions improved as a consequence of all LU and policy 
changes. This will hopefully inspire more future studies that combine 
LUCM with the complex and transient nature of groundwater hydrology 
and management, at a granular scale that is relevant for groundwater 
processes and management. At the case-study level, this will allow de
cision makers to quantitatively understand what drove changes to LUC 
and better qualitatively understand the impacts of LUC on groundwater 
conditions. Further, it will allow modelling of future scenarios consid
ering a range of possible LUC and climatic conditions. 

2. Case study 

Overall, agriculture has created continuous LUC over time in the 
MDB, which dramatically altered water and salt fluxes creating serious 
environmental and productivity problems (Dowling et al., 2004). The 
MDB has been subject to severe droughts, most notoriously the so-called 
Millennium Drought from 2001 to 2009 and another more recently in 
2017–2020 (Holgate et al., 2020). Changes in agricultural practices in 
South-western Australia have led to increases in groundwater recharge, 
rising water tables and increased salinization (Zhang et al., 1999) with 
three quarters of water used sourced from groundwater rather than 
surface water (Ali et al., 2012). These impacts can be observed at the 
large MDB scale, but also at small scales such is in basins like AB. 

AB, also known as Langhorne Creek, is an economically-thriving 
famous world-class wine region (Thomson, 2004a), which first vine
yards date back to 1860 (Thomson, 2004b). It is located adjacent to Lake 
Alexandrina, at the mouth of the Murray-Darling river system, and part 
of the Eastern Mount Lofty Ranges (EMLR) Water Resources Area since 
2005 (Fig. 1). The area is situated on the floodplains of the Angas and 
Bremer ephemeral rivers (Harris, 1993). These rivers have a low salinity 
of < 1000 mg/L and discharge into Lake Alexandrina. AB’s economy is 
primarily supported by a premium wine-grape industry that historically 
depended on pumped groundwater for irrigation, and has shifted to 
surface water as predominant water source since the 1990 s (Cua
drado-Quesda, 2017; Watkins et al., 2006). Other crops include al
monds, vegetables, cereals, pasture, lucerne and olives (Harris, 1993; 
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Watkins et al., 2006). According to Cresswell and Gibson (2004), the 
region has a Mediterranean climate with hot, dry summers and cool, 
moist winters. Average rainfall and pan evaporation range from 380 to 
490 and 1150 to 1600 mm/year, respectively (Zulfic and Barnett, 2007; 
Cresswell and Gibson 2004). The area has been subject to severe 
droughts, most notoriously the so-called Millennium Drought from 2001 
to 2009 and another more recently in 2017–2020 (Holgate et al., 2020). 
Hydrogeologically, the region is formed by two main aquifers (Zulfic 
and Barnett, 2007). The shallow unconfined aquifer (10–20 thick) is 
composed of Quaternary sands and gravels, and has a thin, 
semi-confining clay layer at the bottom. Below, there is a Tertiary 
limestone aquifer (~100 m thick), which is the main source of 
groundwater for the region as it provides fresher water and higher yields 
than the top aquifer. There are water-bearing formations below, which 
are not used because of high salinities and low yields. The recharge 
processes are not clear, although Zulfic and Barnett (2007) hypostasize 
focused recharge from the rivers Angas and Bremer dominates over 
basin-wide spatially-distributed recharge. The same authors provide a 
detailed hydrogeological description of the basin. 

The evolution of water management in the region is complex and a 
schematic representation can be seen in Shalsi et al. (2019, 2022). Our 
analysis is up to 2014 because of LU data availability and LU is 
considered to have remained stable since. Although we followed the key 
water management phases from Shalsi et al. (2019), the phases we 
modelled differ slightly due to data and LU maps availability. 

2.1. Phase 1: 1949–1986 

The area developed rapidly after the Second World War, and the 
introduction of electrical groundwater pumps in the 1950 s resulted in 
the expansion of agricultural irrigation (mainly for lucerne) (Harris, 
1993). There was no control over groundwater pumping and by 1981 
annual groundwater extraction was unsustainable - four times that of the 
natural annual recharge (Thomson, 2004b; Howles, 2001; Cua
drado-Quesda, 2017). The irrigators started to observe alarming low 

groundwater and high salinity levels, and lobbied the South Australian 
government to proclaim the area as a water management zone under the 
1976 Water Resources Act (Howles, 1994). This provided the mecha
nism to control groundwater extraction through water licenses, with the 
aim of subsequently reducing salinity levels in the AB area (Shalsi et al., 
2019). 

2.2. Phase 2: 1986–1993 

Through the requirements of the 1976 Water Resources Act, 
groundwater extraction was reduced by 30% from 29,000 to 
20,000 ML/year (Howles, 2001; Shalsi et al., 2019). This was achieved 
under the first two water management plans (WMPs) (1987 and 1992), 
which in turn allowed irrigators to access equivalent volumes of surface 
water from Lake Alexandrina because the (small) volume of surface 
water pumped was not considered a risk to the lake (Howles, 1994). The 
WMPs encouraged irrigators to artificially recharge the aquifer with 
excess water not used for irrigation through a managed aquifer recharge 
(MAR) scheme. The irrigators had the right to extract 50% of the total 
recharged volume over a 3-year period (Shalsi et al., 2019). AB irrigators 
privately funded and constructed pipelines to transport water from Lake 
Alexandrina, in addition some of the winter flows from Angas and 
Bremer were diverted and discharged into the aquifer via recharge wells. 

2.3. Phase 3: 1993–2003 

By the mid-1990 s, surface water had become a significant part of 
water management plans and an irrigation source for the basin and by 
2001, an 80% reduction in groundwater extraction was achieved (Shalsi 
et al., 2019). The AB Code of Practice (CoP) was introduced in 2001, 
which meant all AB irrigators were required to monitor root zone 
salinity and plant 2 ha of native vegetation for every 100 Ml of surface 
water licence (Howles, 2001; Muller, 2002). The CoP was funded and 
managed by the irrigators and became a legal requirement of the water 
licenses. 

Fig. 1. Location map of AB, including weather stations used in rainfall interpolations.  
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2.4. Phase 4: 2003–2008 

This period includes the longest recorded drought in Australia, the 
so-called millennium drought, from 2001 to 2009 (Holgate et al., 2020). 
Due to its negative effects on the lake water quality and availability, the 
irrigators lobbied for a 110-km pipe to be constructed to pump water 
from the River Murray instead of the Lake Alexandrina (Shalsi et al., 
2019). 

2.5. Phase 5: 2008–2014 

This period represents the post-drought. The pipe was completed at 
the end of the drought in 2009 and as such was not effective in 
addressing the impacts of the millennium drought on water availability, 
but it is considered important to safeguard future water supply (Shalsi 
et al., 2019). 

3. Methods 

3.1. Model selection 

Many LUC models use Transition Analysis Strategy (TAS), which are 
limited in model flexibility when multiple LUs are taken into account. To 
solve this problem, Pattern Analysis Strategy (PAS) can be used, which 
calculates the probability of occurrences of a LU within each cell via 
competition. The Dyna-CLUE and FLUS model are based upon PAS 
methods. Previous studies using Dyna-CLUE (Shrestha et al., 2020; 
Trisurat et al., 2019; Adhikari et al., 2020; Pindozzi et al., 2017) and 
FLUS (Penny et al., 2021; Liang et al., 2018a, 2018b; Yan et al., 2018; 
Liu et al., 2017a, 2017b) have struggled to allocate and predict multiple 
LU demands at local scales at a fine resolution, a requirement that is key 
to future LU planning and policy making (Lourdes et al., 2011; Liang 
et al., 2021a, 2021b; Verburg et al., 2006). Models that use PAS further 

lack the ability to reveal how driving factors cause LUC. For example, 
when using the FLUS model, separate logistic regression analysis is 
needed to analysis the influence of driving factors on LU (Penny et al., 
2021). The novel PLUS model, created by Liang et al. (2021a, 2021b), 
was developed to promote better understanding of the complex re
lationships behind LUC, by helping to reveal the underlying drivers and 
their differing contributions. Unlike previous models, the PLUS model 
combines TAS and PAS methodology, and can simultaneously provide 
insights behind the drivers and dynamics of LU types and their transi
tion. As an improvement to previous models, PLUS uses (i) rasters as 
inputs, (ii) Land Expansion Analysis Strategy and Cellular Automata to 
simulate multiple patch-based growth at fine scale resolutions, and (iii) 
TAS and PAS to automatically analysis the influence of driving factors. 
All the above enable the PLUS model to obtain higher simulation ac
curacy with smaller local catchment sizes. Liang et al. (2021a, 2021b) 
previously used the PLUS model on an 8494 km2 catchment. Conse
quently, PLUS was chosen for this study, which is available to download 
from https://github.com/HPSCIL/Patch-generating_Land_Use_Simulati 
on_Model. Although PLUS was designed for small catchments, the AB 
catchment is significantly smaller than previously attempted, at 
250 km2, which in itself is novelty of this study and required several 
code modifications and improvements to address calibration errors as 
explained later. 

3.2. Model inputs and driving factors 

A large amount of data was compiled from different sources 
(Table 1). Seven LU classes were determined from the available LU 
maps: Dryland Farming, Conservation area, Horticulture, Vegetables, 
Irrigated Crops, Vineyards and Urban/Other. Water body extent 
remained unchanged throughout the study period, so were not included 
as a separate LU class. A large number of driving factors were used in this 
study when compared to other LUCM studies. This was because of the 

Table 1 
Input data for the PLUS model.  

Category Data Year Data source Data processing (Arc-GIS) 

LU/cover 
data LU Maps 

1949, 1986, 1993, 
2003, 2008, 2014 

Government of South Australia, 
Department for Environment and Water  

Driving 
Factors 

Aridity Index 1970–2000 
Global-Aridity _ET0 
(CGIAR-CSI, 2019) Extraction - Extract by Mask 

Potential 
Evapotranspiration 1970–2000 

Global Reference Evapotranspiration 
(Gobal-ET0) 
(CGIAR-CSI, 2019) Extraction - Extract by Mask 

DEM / Slope 2007 

GEODATA 9 Second Digital Elevation 
Model (DEM-9S) Version 3 
(Hutchinson et al., 2008) The Surface tool – Slope 

Flow Direction / 
Drainage Basin 2007 

GEODATA 9 Second Flow Direction Grid 
(D8–9S) 
(Hutchinson et al., 2008) Hydrology tools: (i) Basin and (ii) Flow Direction 

Rainfall 1949–2020 

Australian Government Bureau of 
Meteorology (Bureau of Meteorology, 
2021) 

Interpolation using Kriging. 
Location of Point data of the nine rainfall stations can be seen in  
Fig. 1. 

Proximity to Rivers 1949–2014  Created from LU maps - Euclidean Distance used to extract distance 
Proximity to Lake 1949–2014  Created from LU maps - Euclidean Distance used to extract distance 

Groundwater Level 
1950, 1977, 2004, 
2015 

Government of South Australia, 
Department for Environment and Water 
Number of wells used: 1950 – no info, 
1977 – 146, 2004 – 249, 2015 – 126 

Interpolation provided by the Government of South Australia, 
Department for Environment and Water 

Groundwater Salinity 
1950, 1977, 1996, 
2006, 2014 

Government of South Australia, 
Department for Environment and Water 
Number of wells used: 1950 – no info, 
1996 – 40, 2006 – 31, 2014–77 

Interpolation provided by the Government of South Australia, 
Department for Environment and Water 

Soil capability/ 
productivity 2001 

Government of South Australia, 
Department for Environment and Water Created from soil maps - Euclidean Distance used to extract distance 

Population Density 2000, 2003, 2014 
LandScan Datasets (2000); LandScan 
Datasets, 2003; LandScan Datasets, 2014 Extraction - Extract by Mask  

Urban Area 
1949, 1986, 1993, 
2003, 2008, 2014 

Government of South Australia, 
Department for Environment and Water 

Euclidean Distance used to extract distance from urban areas found 
within the LU maps. The distance from urban area was then used as a 
driving factor within the model.  
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small size of the catchment, which required an increased number of 
driving factors to improve the accuracy of the results. The 16 driving 
factors chosen were based on data availability and included Ground
water level, Groundwater salinity, Distance to lake, Slope, Elevation, 
Distance to Rivers, Distance to urban areas, Population Density, Soil 
Productivity (defined as 65–100% soil productive potential for Vines 
and Lucerne), Drainage, Groundwater flow direction, Evapotranspira
tion, Rainfall and Aridity. Raster maps were created for these attributes 
in Arc-GIS using a number of tools (Table 1). Practical tips for analytical 
steps and data preparation for computer processing can be found in the 
supplementary material (SM1). The model was trained using each of the 
past LU maps available, to make sure conversion settings were correct all 
LU maps were utilised. This ultimately determined the phases that were 
used within the study as these were the dates of the available maps. 

3.3. Calibration and validation 

Validation of LU models is frequently conducted through Kappa co
efficient (Rafiee et al., 2009; Jain et al., 2016; Arsanjani et al., 2011; 
Huang et al., 2018; Milad et al., 2016; Rawat, 2015). The Kappa coef
ficient, also known as the KHAT statistic, reflects the degree of simi
larity, or change, between the simulated LU results and the reference 
map of actual LU – it ranges from 0 (no agreement between simulated 
and reference map) to 1 (complete agreement between both maps). 
When calculating Kappa, an overall accuracy (OA) classification is 
produced via a confusion or accuracy matrix (Disperati and Virdis, 
2015). The accuracy matrix returns Producer’s Accuracy and User’s 
Accuracy, which are a measure of agreement between observed and 
modelled cells. Some argue that this confusion matrix is more helpful 
than Kappa (Pontius and Millones, 2011) by providing greater accuracy 
results than Kappa (Disperati and Virdis, 2015). Nevertheless, Liang 
et al. (2021a, 2021b) and Pontius et al. (2008) argue that Kappa has 
important flaws and instead figure of merit (FoM) should be use. As a 
consequence of disagreements in the literature, this study used the three 
validation methods Kappa, FOM and OA to validate the simulation re
sults and assess the classification and accuracy of results. 

4. Results and discussion 

4.1. Spatial and temporal evolution of LUC 

Fig. 2 shows the % distribution of LUC for the period 1949–2014. The 
most obvious LUCs are the increases in vineyards that occurred from 
1949 to 2003. Dryland farming significantly decreased during the period 
1949–2014. Irrigated crops and Vegetables increased up to 2003 and 
stayed at around a constant level since. Spatially, little change was 
observed in Horticulture, with Urban and Conservation areas increasing 

after 2003 (Fig. 2). From the total of 16 driving factors used in this 
modelling exercise (Table 1), the four key ones, which also varied 
temporally and spatially, were soil productivity, groundwater levels, 
groundwater salinity and rainfall (Figs. 3, 4, 5 and 6). 

The most productive soils (defined as 100% or 65% productive po
tential for Vines and Lucerne) are alluvial in origin and are located in the 
central part of the catchment adjacent to the river channels, with soil 
productivity decreasing with distance to the rivers (Fig. 3). These pro
ductive soils require no more than standard management practices to 
sustain soil productivity and crop growth. 

Fig. 4 shows the spatial evolution of groundwater levels from 1950 to 
2014 – annual maps are presented according to data availability and 
were provided by the South Australian Government Department for the 
Environment and Water already interpolated and without access to 
primary information – the number of wells used (according to the 
publicly available data base) is provided in Table 1; some of these maps 
are described by Zulfic and Barnett (2007). The highest groundwater 
levels were observed in the NW and the lowest in the SE of the catch
ment, indicating a general flow in this direction. Groundwater levels 
were at their lowest in 1986, and have recovered to 1950′s levels by 
2014. Fig. 5 shows the spatial evolution of groundwater salinities 
throughout the study period. Despite the temporal fluctuations, the 
lowest salinity levels (500–2500 mg/l) are recorded surrounding the 
rivers and Lake Alexandrina – annual maps are presented according to 
data availability, and were sourced similarly to the groundwater maps. 
There is an increase in the recorded annual averaged groundwater 
salinity from 1950 to 2006 throughout the study area. The salinity levels 
recorded during this period reached 10,500– 11,500 mg/L. However, by 
2014 salinity level have begun to recover returning to those recoded in 
1950 and 1977 – this is particularly the case in the central area, where 
most of groundwater pumping occurs. 

For the modelled years, reduced rainfall periods were observed in 
1949–1993 and 2008–2014, with the greatest rainfall recorded in 2003 
(Fig. 6). Spatially, the highest annual rainfall was in towards the west.  
Fig. 7 shows the annual rainfall rates in the area for the period 
1949–2015. The highest annual rates were observed in 1992 at 623 mm. 
A total of two years recorded annual rainfall below 250 mm (1957 and 
1967), with 6 years recording annual rainfall below 300 mm (1977, 
1982, 1994, 1999, 2002 and 2006). 

4.2. Land use change modelling 

4.2.1. Validation (past and current LU) 
A number of different model iterations took place to calibrate the 

model. Once the optimum initiation parameters were found, a validation 
process took place that is summarised in Table 2. The improved simu
lation accuracy was achieved by increasing the Patch generation 
threshold and decreasing the expansion coefficient (Liang et al., 2021a, 
2021b). The best FoM results for validating LUC were found for the 
period 1986 – 1993 (FoM = 0.61). This period also had the highest 
overall accuracy when using the confusion matrix (OA = 92%) and 
second highest KHAT (0.75). In general, validation methods agree – high 
FoM corresponded to increased accuracies for KHAT and OA. The 
exception was for the period 2008–2014, where FoM returned the 
lowest simulation accuracy achieved (0.39), but KHAT and OA returned 
the highest of 0.87% and 92% respectively. The reason for this could be 
that this was the period of least LUC. Examples of validation results are 
illustrated in Fig. 8, which compares the observed and simulated LU 
patterns in 1993, 2003 and 2014. Using the TAS and PAS methodology, 
we automatically analyse the influence of driving factors (Fig. 8). The 
results imply that, throughout the phases, LUC was driven by Produc
tivity distance, Slope, Groundwater level, Groundwater salinity, River 
Distance and Rainfall. 

4.2.2. Phase 1: LUC 1949–1986 
Fig. 9 quantifies the contribution of the key driving factors for each Fig. 2. LU classes for from 1949 to 2014.  
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LUC period. Between 1949 − 1986 the majority of LU remained Dryland 
farming (cereal crops such as wheat) (Fig. 2), changing from 94% to 
87%. Irrigated crops (mostly lucerne) increased from 0.1% to 6%, and 
Vineyards increased from 1% to 1.4%. Other LUs remained close to 
unchanged. LUC for both Vineyards and Irrigated crops was driven by 

soil productivity (11% and 13%, respectively) and proximity to the 
rivers (17% and 12%, respectively) (Fig. 9). Being situated within or 
near to the most fertile soil, and distance to the Angas and Bremer Rivers 
(Fig. 3), where groundwater salinities are typically lower and where 
there is more access to flood water for irrigation (Zulfic and Barnett, 

Fig. 3. Most productive soils and distance from the most productive soils (km), where 100% and 65% represent the soil productive potential for Vines and Lucerne.  

Fig. 4. Groundwater levels from 1950 to 2014.  
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2007; Howles, 2001; Angas Bremer Water Resource Committee, 2001; 
Watkins et al., 2006). This is a consequence of favourable conditions for 
irrigated crop production near the rivers. Vineyards were traditionally 
planted on the deep, alluvial floodplain soils of the ephemeral Angas and 
Bremer Rivers (Thomson, 2004b). Other influential drivers for vineyards 

and irrigated crops included groundwater salinity (9% and 8%, 
respectively) and level (11% and 6%, respectively) (Fig. 9), with low 
groundwater salinities (derived from historical recharge from the 
rivers), more favourable for Irrigated crops and Vineyards, which is also 
associated to the proximity to the rivers. Furthermore, these areas are 

Fig. 5. Groundwater salinity levels from 1949 to 2014.  

Fig. 6. Annual Rainfall for 1949–2015 using all of rainfall stations identified in Fig. 1.  
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characterised by sandy soils, which are also favourable for quality and 
high-yielding wine grapes production (e.g. Pérez-Álvarez et al., 2019; 
WenChao et al., 2012). This LUC had consequences for groundwater 
quality and availability. Groundwater salinities increased by 1977 and 
levels decreased by 1986 (Figs. 4, 5) in the centre and south of the 
catchment resulting from heavy groundwater extraction for irrigation of 
these two crop types. These findings are consistent with the qualitative 
analysis of Shalsi et al. (2019). 

4.2.3. Phase 2: LUC 1986–1993 
LU changed dramatically from 1986 to 1993 – Dryland farming was 

replaced by Vineyards and Vegetables (Fig. 2), however changes in 
Vineyard area was more dramatic, increasing from 1% in 1986–7% of 
the catchment by 1993. A socio-economic reason for this change is that 
Lucerne has a high water demand and a low economic return, whereas 
crops such as grapes require less irrigation and have a higher economic 
value (Howles, 1994). This is the main reason for the change from 
Dryland farming to Vineyards (Shalsi et al., 2019). 

Areas associated with increases in Vegetables, Vineyards and Irri
gated crops were to the greatest extent driven by increased rainfall 
(18%, 15% and 13%, respectively) (Fig. 9). Between Phase 1 and Phase 
2, a decrease in 20–30 mm mean annual rainfall across the catchment 
was observed (Figs. 6 and 7). The highest rainfall rates were in the west 
and south of the catchment. These areas were associated with new 
Vineyards, Irrigated Crops and Vegetables. In the east, where annual 
rainfall is less, the catchment has chiefly remained Dryland farming. 
Locations in the east are also associated with high groundwater salin
ities, with increase salinity levels observed in 1993 compared to 1986 
(Figs. 4 and 5). 

Similarly to phase 1, Vineyards and Irrigated crops expansion was 
driven by groundwater salinity (10% and 7%, respectively) and level 
(10% for both vineyards and Irrigated crops) (Figs. 9 and 5). These crop 
types are found in areas of lower groundwater salinity (1500–3500 mg/ 
L), alongside the Rivers Angas and Bremer, and in the south of the 
catchment near Lake Alexandrina. These finding agree with the Angas 
Bremer Proclaimed Wells Area Management Plan July 1992- June 1997 
where: (i) groundwater salinities over 5000 mg/L have moved to within 
1 km of the Langhorne Creek township, (ii) the area of groundwater 
salinities < 2000 mg/L has decreased from more than 25% of the basin 
in the 1950 s to about 7% in 1991, and (iii) groundwater salinities on 
grazing land to the east of the irrigation area have risen to the extent that 
the water was no longer usable for stock (Angas Bremer Water man
agement Committee, 1997). Between 1986 and 1993, expansion of 
Vineyard, Irrigated Crops and Vegetables were also driven by distance 
from the rivers (15%, 8% and 9%, respectively) and the lake (7%, 10% 
and 15%, respectively) (Fig. 9). Vineyards were found in close proximity 
to the Rivers and Vegetables near to Lake Alexandrina. These findings 
link to water management policy because; (i) the 1987 and 1992 water 
management plans allowed and encouraged irrigators to extract water 
from Lake Alexandrina, thus crops located close to the lake had easier 
and more affordable access to fresh water; (ii) the areas close to the 
rivers have fresher groundwater, access to floodwaters and more pro
ductive soils; and, (iii) of suitable locations and water availability for 
managed aquifer recharge. 

4.2.4. Phase 3: LUC 1993–2003 
During this period, expansion of Vineyards and Vegetables, and 

decrease of Dryland Farming were driven by groundwater salinities (6%, 
10% and 11%, respectively) and levels (8%, 8% and 7%, respectively) 
(Fig. 9). Groundwater levels began to return to pre-development levels, 
especially in the north and centre of the catchment (Fig. 4) (Shalsi et al., 
2019). This recovery meant that salinity levels decreased, especially in 
the east, from a maximum of 5500 mg/L to 3500 mg/L (Fig. 4). By 2001, 
groundwater extraction had decreased by 80% (Shalsi et al., 2019), 
partly because of (i) the 1992 water management plan and the conver
sion of groundwater licences to surface water licences, and (ii) the shift 
to more water-efficient crops mentioned before. In fact, due to the high 

Fig. 7. Annual Rainfall 1949–2015 for Langhorne Creek rainfall station (for location see Fig. 1).  

Table 2 
Model calibration and validation results.  

Year FOM 
Producer’s 
Accuracy 

User’s 
Accuracy 

Overall 
Accuracy 

KHAT 
Statistic 

Simulated LU for 
1993 using 
1949 as the 
models starting 
point  0.483  0.644  0.658  90%  0.67 

Simulated LU for 
1993 using 
1986 as the 
models starting 
point  0.61  0.72  0.79  92%  0.75 

Simulated LU for 
2003 using 
1993 as the 
models starting 
point  0.60  0.72  0.78  83%  0.69 

Simulated LU for 
2014 using 
1993 as the 
models starting 
point  0.54  0.65  0.76  79%  0.63 

Simulated LU for 
2014 using 
2003 as the 
models starting 
point  0.49  0.68  0.64  87%  0.76 

Simulated LU for 
2014 using 
2008 as the 
models starting 
point  0.39  0.55  0.56  92%  0.87  
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economic returns, there was a dramatic change in LU with a boom in the 
wine grape industry. Covering the centre of the catchment, the Vineyard 
area increased from 7% to 27% (corresponding to 1700 ha and 6775 ha 
respectively) (Fig. 2). Dryland Farming area decreased from 80% to 
55%. Decreases in LU cover were also found in Vegetables and Irrigated 
crops (2–1% and 5–4%, respectively), which are related to the intro
duction of more efficient centre-pivot irrigation method. The increase in 
Urban area, to 4% of the total area, can mainly be attributed to the 
growth of the wine industry and associated economic improvement 
(Howles, 1994), as many large companies bought land and developed 
vineyards in the district (Thomson, 2008). 

These findings concur with data taken from the Langhorne Creek 
Wine region reports (Phylloxera and Grape Industy Board of South 
Australia, 2003, 2008, 2014; Wine Australia, 2020), where the area 
covered by Vineyards sharply increased between 1998 and 2007, after 
which the area covered by Vineyards remained stable. Thomson (2008) 
affirms that for the period 1993–2002, the area of wine grapes increased 
from 400 ha to 5400 ha, and by 1997, the price per tonne of grapes had 
risen from A$400 to A$1000. 

According to the model, rainfall was the main driving factor for LUC 
during this period (Fig. 9), contributing between 10% and 16% 
depending on LU type – there was a significant increase in rainfall 
(Figs. 6 and 7), with the majority of Vineyards are found in the centre 
and west of the catchment (Fig. 8) where rainfall is higher (Fig. 6). This 
is in contrast with the eastern part of the catchment where majority of 
LU remained dryland farming and rainfall is lower (Fig. 6). These 
findings are interesting because nowhere in the AB-related literature is 
mentioned rainfall spatial distribution plays a role in crop change – 
instead the changes are always attributed to soils productivity and ac
cess to fresh irrigation (surface and/or ground) water. Similarly, to the 
previous period, and for the same reasons, vineyards and irrigated crops 
were found in close proximity to the Angas and Bremer Rivers, and Lake 
Alexandria (Figs. 1 and 9). 

There was an increase from 1% to 2% in Conservation area (Fig. 2). 
This was a consequence of the CoP requirement of irrigators to plant 
2 ha of native vegetation for every 100 ML of water extracted from the 

Lake Alexandrina (Howles, 2001). Native vegetation was planted to 
prevent water logging as it reduces groundwater recharge preventing 
salty groundwater to rise, as well as to protect ecosystems and improve 
biodiversity (Stirzaker and Thomson, 2004; Thomson, 2004b, 2004a). 
This occurred alongside the river within the centre and north of the 
catchment (furthest away from lake Alexandrina (Fig. 7), areas of 
decreased rainfall (Fig. 6) and in locations where there was a high risk of 
rising shallow water table (Stirzaker and Thomson, 2004). In fact, 
Dawes et al. (2004) argue that changes in LU, specifically removing or 
replanting native vegetation, result in changes to stream flow, ground
water recharge/discharge and salt fluxes. This was confirmed by the 
model, which found that new areas of conservation were driven by Lake 
Distance by 22%. 

4.2.5. Phase 4: LUC 2003–2008 
This period registered a stabilisation of LU, with no significant 

change in percentage coverage or spatial distribution of LU (Fig. 2), and 
consequently driving factors have remained similar to the previous 
period (Fig. 9). This period roughly coincides with the Millennium 
drought (2001–2009), in which there was a marked reduction in rain
fall, especially noticeable in the west of the catchment. 

Besides contributing to a dramatic drop in rainfall, the millennium 
drought also made Lake Alexandrina unsuitable for irrigation because as 
the water levels dropped the salinities increased dramatically (Gibbs 
et al., 2018) (Fig. 10). This was mainly due to very low flow rates 
reaching the lake from the upstream Murray-Darling river system. 
Increased salinity levels, expressed as electric conductivity (EC), and 
decrease water levels were observed from the end of 2006 until the end 
of 2010 (Fig. 10). Gibbs et al. (2018) deduced that water level in Lake 
Alexandrina plummeted to below 0 m AHD (Australian Height Datum), 
reaching a minimum –0.88 m AHD on 25 April 2009 that, corresponds 
to high ECs of 6800–7000 uS/cm, between April and May 2009 (Fig. 10). 
This meant farmers had to return to using groundwater for irrigation, 
which over time caused groundwater levels to decrease and salinities to 
increase (Shalsi et al., 2019) (Figs. 4, 5). Consequently, groundwater 
became progressively unsuitable for irrigation as salinity levels reached 

Fig. 8. Comparison of the observed and simulated LU patterns.  
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Fig. 9. Results of the key contributing driving factors for each LUC period – horticulture is not represented because it showed very little change.  

Fig. 10. Daily EC and water levels for Lake Alexandrina between 2003 and 2021.  
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deleterious levels for vine health (~4000–5000 mg/L) (Stirzaker and 
Thomson, 2008, 2005). In fact, a study by Stirzaker and Thomson 
(2005), looking at the average irrigation and salt content of water 
extracted from 50 and 100 cm depths, found that during the 2002–2003 
and 2003–2004 irrigation seasons, 35% and 30% of properties within 
the study respectively recorded soil water salt contents above 
5000 ppm. Groundwater levels and salinities recovered to normal by 
January 2011 because groundwater extraction was reduced once in
flows to Lake Alexandrina returned to normal after the drought ended. 
Thus, because of the successful water management practices in place, 
the negative changes that occurred to groundwater (availability and 
salinity changes), had little influence on LUC distribution. 

4.2.6. Phase 5: 2008–2014 
LU remained stable for 2008–2014. A slight (~2%) change from 

Vineyards to Urban areas was observed (Fig. 2), with the Urban area 
now covering 5% of the catchment, driven by population density (13%) 
and distances from Road Networks (11%) (Fig. 9). Attributed to the 
ongoing development of the wine industry and associated facilities and 
tourism. Even though there was a slight decrease in Vineyard area of 1% 
(Fig. 2), vineyards productivity increased from 39,546 tonnes in 
2011–48,639 tonnes in 2014 (Phylloxera and Grape Industy Board of 
South Australia, 2014). This increase in productivity despite the 
decreased area can be attributed to the 110-km long pipeline completed 
in 2010, that brings water directly from the River Murray. Ironically, the 
pipeline was proposed to fight the effects of the millennium drought but 
was only completed after it ended. As such, from 2011, the irrigators 
were in a much better position to secure good quality water for their 
crops, meaning that their distribution was less effected by spatial 
changes in groundwater salinity (5%) and rainfall (11%) (Fig. 9). The 
addition of the pipeline meant a decrease in groundwater use and re
covery to pre-development levels (Fig. 4). Areas of Conservation also 
increased from 2% to 3%. The new locations of these were found in the 
west, driven by Rainfall (13%), Groundwater salinities (10%) and levels 
(12%), and Slope (10%) (Fig. 9). Conservation areas increased in areas 
less attractive for more productive agriculture LU types. 

5. Recommendations and future work 

Limitations to the work are related to input data quality and avail
ability. Firstly, the number of LU maps available is limited and not 
aligned with the key management dates defined by Shalsi et al. (2019), 
and are only available up to 2014. Secondly, the number of LU classes 
within all the maps was not consistent. Less LU classes were found in the 
older maps, with newer maps having a different number and/or new LU 
classes. Consequently, these LU classes had to be carefully confined to 
groups or reclassified so LU classes were consistent throughout the study 
period, which is a requirement of the modelling code. It would have 
been useful to increase the number of classes throughout the time period 
to analyse the variation in new crops/farming techniques brought to the 
area. However, currently no LUC models are able to do this. Despite 
these limitations, PLUS was able to successfully model LUC at a very 
small local scale. An important challenge for this modelling exercise 
were calibration errors related to the small size of the catchment. The 
source code was improved over four iterations (V1.2.5, V1.2.5 new, V1.3 
and V1.3.5) consequently it is now able to predict LUC at a much finer 
scale. The latest PLUS version is available publicly. This in itself is a 
significant contribution to the LUCM research community globally. 

Unlike previous studies where LUC displays a gradual change 
through infill, encroachment and expansion (e.g. Liang et al., 2018a, 
2018b, 2021a, 2021b; Lourdes et al., 2011; Trisurat et al., 2019; Erdo
gan et al., 2011; Zhu et al., 2010; Liu et al., 2017a, 2017b), PLUS is able 
to model sporadic and sudden LUC, whilst determining distinguishing 
driving factors. We have contributed to LUCM research by demon
strating that local-scale LUCM, at a very high level of detail, is possible, 
through the application of the calibrated and validated novel PLUS 

model. Interesting future work would be to simulate future LUs for the 
Angas Bremer region under different scenarios, which will be particu
larly useful under the threat and uncertainty of climate change, and 
evolution of wine demand in international markets. Such study would 
help to understand future water needs and how they relate to LUC de
cisions by farmers and managers. This can have important implications 
for decisions related to the evolution of the wine industry under a 
changing climate. 

As for LUCM research globally, an important contribution would be 
the development of a code where an increased number of LU classes over 
time could be modelled. Thus reflecting the possible appearance of new 
LU classes (e.g. new crops and farming techniques) and the level of 
spatial resolution that increasingly allows to differentiate between 
classes (e.g. forest types or urban classifications). 

6. Conclusions 

This study pioneers the use of the novel PLUS code to model LUC at a 
small, detailed scale, and contributed for the development of the 
modelling code to more precisely deal with detailed LUC. It is also 
unique in the way it analyses the complex relationship between LUC, 
groundwater conditions and groundwater management approaches, 
providing parameter importance for each driving factor of LUC. Using 
the AB irrigation district of Australia’s MDB as a case study, it expands 
on previous knowledge by quantifying groundwater-related driving 
factors of LUC. This allows decision makers to quantitatively understand 
what drove changes to LUC and better qualitatively understand the 
impacts of LUC on groundwater conditions, and will allow modelling of 
future scenarios considering a range of possible LUC and climatic con
ditions. Groundwater level and salinity were key drivers for LUC 
throughout the study period (1949–2014), which are rarely considered 
in LUCM studies. This reasonably well-known case study allowed us to 
(i) look at the influence of groundwater salinity and level as a driver of 
LUC, rather than the impact of LUC on groundwater that occurs 
frequently in the literature, (ii) model LUC at a detailed local scale, and 
(iii) analyse the systemic relationship between groundwater policy/ 
management and LUC. 

We expand on previous knowledge by quantifying groundwater- 
related driving factors of LUC. The modelling results confirm ground
water quality (as salinity) and availability as key drivers. Out of the 
original 16 driving factors used, both salinity (5%− 11%) and level 
(6%− 12%) were key contributing drivers to LUC depending on agri
cultural land use and phase. The most dramatic change was observed 
between 1993 and 2003 allowing for expansion of irrigated agriculture. 
Other important factors throughout the study period were areas of most 
productive soils and areas associated with high rainfall and river 
flooding. When groundwater salinities increased and groundwater levels 
decreased due to over-extraction, changes in LU occurred with the most 
lucrative and less water-demanding crops (Vineyards) expanding to 
areas close to Lake Alexandrina, which became a new source of fresh
water. This was facilitated by policy and water management approaches 
including MAR, the WMPs and the construction of pipelines that were 
put in place to combat groundwater salinity rises and level declines. This 
qualitatively confirms LUC led to change in groundwater conditions, 
leading to new policies that contributed to a diversification of water 
sources and a change to more profitable and water-efficient crops, but 
also the replantation of native vegetation. Ultimately, this resulted in 
improved groundwater conditions, increased the cover of native vege
tation and allowed regional economic growth. 

This study demonstrates that LUCM on such a local scale (e.g. 
250 km2) is possible. This was conceivable in the AB region due to good 
data availability, which may not be the case in data-sparse regions. Our 
modelling results are well aligned with previous qualitative studies on 
the factors that influence LUC in the AB region, which is an indication 
the model performed well and produced robust outcomes. To the best of 
our knowledge, LUCM was used for the first time to analyse how past 
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transient policies impacted LUC on a local scale catchment over different 
time periods and climatic conditions. LUCM and groundwater data 
analysis are not typically conducted together, and this paper provides a 
demonstration of how it can be done in practice, and at a fine scale 
enough to be relevant for decision makers. We advocate this to be done 
elsewhere where groundwater conditions and management approaches, 
and LUC have such a dynamic, transient and complex relationship. 
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