16 research outputs found

    ENTRAPMENT NEUROPATHIES OF THE UPPER EXTREMITIES AND NEW TRENDS IN PHYSIOTHERAPY

    Get PDF
    Purpose. The purpose of this work was to highlight the importance of targeted physiotherapy in the treatment of nerve entrapment syndrome in the upper limb using the latest physiotherapeutic techniques.Material and methods. In this work, 56 patients are presented as diagnosed with nerve entrapment syndrome in the upper limb. 45 of them are women and 21 are men, ranging in age from 26–72 years old with an average age of 49 years. We evaluated the pain condition, pain intensity, and also functional deficits before and after rehabilitation treatment over a duration of four weeks.Conclusion. As a result of targeted therapy towards nerve entrapment syndrome in the upper limb, the functional condition of the majority of our patients has improved and their pain was reduced.The expected mechanism of this kind of physiotherapy is to improve blood circulation in the affected area, adjust the biomechanical forces that affect joint structures, improve the functional condition, and prevent a relapse of the disease from occurring.Keywords. Entrapment neuropathies, upper extremities, pain, physiotherapy

    The widespread use of topical antimicrobials enriches for resistance in Staphylococcus aureus isolated from patients with atopic dermatitis.

    Get PDF
    BACKGROUND: Carriage rates of Staphylococcus aureus on affected skin in atopic dermatitis (AD) are approximately 70%. Increasing disease severity during flares and overall disease severity correlate with increased burden of S. aureus. Treatment in AD therefore often targets S. aureus with topical and systemic antimicrobials. OBJECTIVES: To determine whether antimicrobial sensitivities and genetic determinants of resistance differed in S. aureus isolates from the skin of children with AD and healthy child nasal carriers. METHODS: In this case-control study, we compared S. aureus isolates from children with AD (n = 50) attending a hospital dermatology department against nasal carriage isolates from children without skin disease (n = 49) attending a hospital emergency department for noninfective conditions. Using whole genome sequencing we generated a phylogenetic framework for the isolates based on variation in the core genome, then compared antimicrobial resistance phenotypes and genotypes between disease groups. RESULTS: Staphylococcus aureus from cases and controls had on average similar numbers of phenotypic resistances per isolate. Case isolates differed in their resistance patterns, with fusidic acid resistance (FusR ) being significantly more frequent in AD (P = 0·009). The genetic basis of FusR also differentiated the populations, with chromosomal mutations in fusA predominating in AD (P = 0·049). Analysis revealed that FusR evolved multiple times and via multiple mechanism in the population. Carriage of plasmid-derived qac genes, which have been associated with reduced susceptibility to antiseptics, was eight times more frequent in AD (P = 0·016). CONCLUSIONS: The results suggest that strong selective pressure drives the emergence and maintenance of specific resistances in AD

    Bacteremia in critical care units at Bugando Medical Centre, Mwanza, Tanzania: the role of colonization and contaminated cots and mothers’ hands in cross-transmission of multidrug resistant Gram-negative bacteria

    No full text
    Article of Antimicrobial Resistance and Infection Control (2020) pg, 2-14Background: Multidrug resistance (MDR) is a major clinical problem in tertiary hospitals in Tanzania and jeopardizes the life of neonates in critical care units (CCUs). To better understand methods for prevention of MDR infections, this study aimed to determine, among other factors, the role of MDR-Gram-negative bacteria (GNB) contaminating neonatal cots and hands of mothers as possible role in transmission of bacteremia at Bugando Medical Centre (BMC), Mwanza, Tanzania. Methods: This cross-sectional, hospital-based study was conducted among neonates and their mothers in a neonatal intensive care unit and a neonatology unit at BMC from December 2018 to April 2019. Blood specimens (n = 200) were sub- cultured on 5% sheep blood agar (SBA) and MacConkey agar (MCA) plates. Other specimens (200 neonatal rectal swabs, 200 maternal hand swabs and 200 neonatal cot swabs) were directly inoculated on MCA plates supplemented with 2 μg/ml cefotaxime (MCA-C) for screening of GNB resistant to third generation cephalosporins, r-3GCs. Conventional biochemical tests, Kirby-Bauer technique and resistance to cefoxitin 30 μg were used for identification of bacteria, antibiotic susceptibility testing and detection of MDR-GNB and screening of potential Amp-C beta lactamase producing GNB, respectively. Results: The prevalence of culture confirmed bacteremia was 34.5% of which 85.5% were GNB. Fifty-five (93.2%) of GNB isolated from neonatal blood specimens were r-3GCs. On the other hand; 43% of neonates were colonized with GNB r- 3GCs, 32% of cots were contaminated with GNB r-3GCs and 18.5% of hands of neonates’ mothers were contaminated with GNB r-3GCs. The prevalences of MDR-GNB isolated from blood culture and GNB r-3GCs isolated from neonatal colonization, cots and mothers’ hands were 96.6, 100, 100 and 94.6%, respectively. Significantly, cyanosis (OR[95%CI]: 3.13[1.51–6.51], p = 0.002), jaundice (OR[95%CI]: 2.10[1.07–4.14], p = 0.031), number of invasive devices (OR[95%CI]: 2.52[1.08–5.85], p = 0.031) and contaminated cot (OR[95%CI]: 2.39[1.26–4.55], p = 0.008) were associated with bacteremia due to GNB. Use of tap water only (OR[95%CI]: 2.12[0.88–5.09], p = 0.040) was protective for bacteremia due to GNB. Conclusion: High prevalence of MDR-GNB bacteremia and intestinal colonization, and MDR-GNB contaminating cots and mothers’ hands was observed. Improved cots decontamination strategies is crucial to limit the spread of MDR- GNB. Further, clinical presentations and water use should be considered in administration of empirical therapy whilst awaiting culture results

    The widespread use of topical antimicrobials enriches for resistance in <i>Staphylococcus aureus</i> isolated from Atopic Dermatitis patients

    No full text
    Background Carriage rates of Staphylococcus aureus on affected skin in atopic dermatitis (AD) are approximately 70%. Increasing disease severity during flares and overall disease severity correlate with increased burden of S. aureus. Treatment in AD therefore often targets S. aureus with topical and systemic antimicrobials. Objectives To determine whether antimicrobial sensitivities and genetic determinants of resistance differed in S. aureus isolates from the skin of children with AD and healthy child nasal carriers. Methods In this case–control study, we compared S. aureus isolates from children with AD (n = 50) attending a hospital dermatology department against nasal carriage isolates from children without skin disease (n = 49) attending a hospital emergency department for noninfective conditions. Using whole genome sequencing we generated a phylogenetic framework for the isolates based on variation in the core genome, then compared antimicrobial resistance phenotypes and genotypes between disease groups. Results Staphylococcus aureus from cases and controls had on average similar numbers of phenotypic resistances per isolate. Case isolates differed in their resistance patterns, with fusidic acid resistance (FusR) being significantly more frequent in AD (P = 0·009). The genetic basis of FusR also differentiated the populations, with chromosomal mutations in fusA predominating in AD (P = 0·049). Analysis revealed that FusR evolved multiple times and via multiple mechanism in the population. Carriage of plasmid‐derived qac genes, which have been associated with reduced susceptibility to antiseptics, was eight times more frequent in AD (P = 0·016). Conclusions The results suggest that strong selective pressure drives the emergence and maintenance of specific resistances in AD.</p

    Bacteremia in critical care units at Bugando Medical Centre, Mwanza, Tanzania: the role of colonization and contaminated cots and mothers’ hands in cross-transmission of multidrug resistant Gram-negative bacteria

    No full text
    Article of Antimicrobial Resistance and Infection Control (2020) pg, 2-14Background: Multidrug resistance (MDR) is a major clinical problem in tertiary hospitals in Tanzania and jeopardizes the life of neonates in critical care units (CCUs). To better understand methods for prevention of MDR infections, this study aimed to determine, among other factors, the role of MDR-Gram-negative bacteria (GNB) contaminating neonatal cots and hands of mothers as possible role in transmission of bacteremia at Bugando Medical Centre (BMC), Mwanza, Tanzania. Methods: This cross-sectional, hospital-based study was conducted among neonates and their mothers in a neonatal intensive care unit and a neonatology unit at BMC from December 2018 to April 2019. Blood specimens (n = 200) were sub- cultured on 5% sheep blood agar (SBA) and MacConkey agar (MCA) plates. Other specimens (200 neonatal rectal swabs, 200 maternal hand swabs and 200 neonatal cot swabs) were directly inoculated on MCA plates supplemented with 2 μg/ml cefotaxime (MCA-C) for screening of GNB resistant to third generation cephalosporins, r-3GCs. Conventional biochemical tests, Kirby-Bauer technique and resistance to cefoxitin 30 μg were used for identification of bacteria, antibiotic susceptibility testing and detection of MDR-GNB and screening of potential Amp-C beta lactamase producing GNB, respectively. Results: The prevalence of culture confirmed bacteremia was 34.5% of which 85.5% were GNB. Fifty-five (93.2%) of GNB isolated from neonatal blood specimens were r-3GCs. On the other hand; 43% of neonates were colonized with GNB r- 3GCs, 32% of cots were contaminated with GNB r-3GCs and 18.5% of hands of neonates’ mothers were contaminated with GNB r-3GCs. The prevalences of MDR-GNB isolated from blood culture and GNB r-3GCs isolated from neonatal colonization, cots and mothers’ hands were 96.6, 100, 100 and 94.6%, respectively. Significantly, cyanosis (OR[95%CI]: 3.13[1.51–6.51], p = 0.002), jaundice (OR[95%CI]: 2.10[1.07–4.14], p = 0.031), number of invasive devices (OR[95%CI]: 2.52[1.08–5.85], p = 0.031) and contaminated cot (OR[95%CI]: 2.39[1.26–4.55], p = 0.008) were associated with bacteremia due to GNB. Use of tap water only (OR[95%CI]: 2.12[0.88–5.09], p = 0.040) was protective for bacteremia due to GNB. Conclusion: High prevalence of MDR-GNB bacteremia and intestinal colonization, and MDR-GNB contaminating cots and mothers’ hands was observed. Improved cots decontamination strategies is crucial to limit the spread of MDR- GNB. Further, clinical presentations and water use should be considered in administration of empirical therapy whilst awaiting culture results
    corecore