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Summary

Background Carriage rates of Staphylococcus aureus on affected skin in atopic dermatitis
(AD) are approximately 70%. Increasing disease severity during flares and overall
disease severity correlate with increased burden of S. aureus. Treatment in AD
therefore often targets S. aureus with topical and systemic antimicrobials.
Objectives To determine whether antimicrobial sensitivities and genetic determi-
nants of resistance differed in S. aureus isolates from the skin of children with AD
and healthy child nasal carriers.
Methods In this case–control study, we compared S. aureus isolates from children
with AD (n = 50) attending a hospital dermatology department against nasal car-
riage isolates from children without skin disease (n = 49) attending a hospital
emergency department for noninfective conditions. Using whole genome
sequencing we generated a phylogenetic framework for the isolates based on
variation in the core genome, then compared antimicrobial resistance phenotypes
and genotypes between disease groups.
Results Staphylococcus aureus from cases and controls had on average similar numbers of
phenotypic resistances per isolate. Case isolates differed in their resistance patterns,
with fusidic acid resistance (FusR) being significantly more frequent in AD
(P = 0�009). The genetic basis of FusR also differentiated the populations, with chro-
mosomal mutations in fusA predominating in AD (P = 0�049). Analysis revealed that
FusR evolved multiple times and via multiple mechanism in the population. Carriage
of plasmid-derived qac genes, which have been associated with reduced susceptibility
to antiseptics, was eight times more frequent in AD (P = 0�016).
Conclusions The results suggest that strong selective pressure drives the emergence
and maintenance of specific resistances in AD.

What’s already known about this topic?

• Staphylococcus aureus frequently colonizes individuals with atopic dermatitis (AD), with

increasing disease severity correlating with greater bacterial load of the organism.
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• Antimicrobial therapies are routinely used in AD for management and prevention

of disease flares.

What does this study add?

• Staphylococcus aureus isolates from children with AD differ in their antimicrobial resis-

tance profiles from those in healthy, nonatopic nasally colonized children.

• Fusidic acid resistance is significantly more prevalent in cases of AD, and arises

through distinct genetic mechanisms when compared with healthy controls.

• Carriage of plasmid-derived genetic determinants associated with antiseptic resis-

tance also clearly differentiated S. aureus from cases of AD and controls.

Fundamental to the success of Staphylococcus aureus as a pathogen

has been is its ability to become resistant to almost every class

of antibiotic. The sequential introduction of antimicrobials has

directly influenced the emergence and spread of the major

drug-resistant lineages of this organism.1 Generally we con-

sider the problems posed by resistance in terms of at-risk pop-

ulations, for instance methicillin-resistant S. aureus (MRSA)

transmission and invasive infection in hospital inpatients.

There are specific patient groups who have increased propen-

sity for S. aureus carriage and, as a corollary, infection.2 Com-

pared with the general population these patients are at higher

risk of drug resistance from frequent antimicrobial usage to

manage their condition. Patients with inflammatory skin disor-

ders exemplify this.

Atopic dermatitis (AD) is the most common inflammatory

skin disease of childhood, affecting up to 25% of children in

the U.K.3 Individuals with AD are specifically prone to colo-

nization by S. aureus. Cumulative observational evidence has

shown that 70% of patients with AD carry the bacterium on

lesional skin.4 Clinically, there is an observable link between

increasing disease activity and S. aureus carriage. Disease sever-

ity correlates with bacterial load5 and the immune response

mounted against it.6 Consequently, antimicrobial interventions

form part of routine care in this patient group. There is no

uniformly accepted diagnostic definition of colonization vs.

infection in AD, and practices pertaining to use of these treat-

ments vary between dermatologists and in the community.

Presently, there is a paucity of high-quality study evidence

supporting beneficial outcomes with usage of antimicrobials

in the management of AD flares, which raises the issue of

whether they should in fact be used at all.7,8

We aimed to determine whether there were phenotypic and

genotypic differences in antimicrobial resistance patterns in

S. aureus from the skin of children with AD compared with

S. aureus asymptomatically nasally carried by children without

skin disease.

Patients and methods

Ethics

Approval for these studies was obtained from the research

ethics committees of Our Lady’s Children’s Hospital or Temple

Street Children’s University Hospital, in Dublin, Ireland. Stud-

ies were conducted in accordance with the Declaration of Hel-

sinki, and written informed parental consent was obtained.

Patients

Children aged 0–7 years meeting the U.K. diagnostic criteria for

AD9 with moderate-to-severe disease were recruited through the

dermatology clinic at Our Lady’s Children’s Hospital, between

September 2012 and September 2014. Nonatopic, age-matched

controls were recruited during attendance with a noninfectious

illness at the emergency department, Temple Street Children’s

Hospital, during July and August 2009 as part of a separate S. au-

reus nasal carriage study by an independent study team. Full eligi-

bility and exclusion criteria for both studies were exactly as

previously described.10 Cases were swabbed at a single inflamed

skin site, while controls were swabbed from a single nostril,

with S. aureus isolation proceeding as previously published. All

isolates were then subjected to the same analyses. Sample sizes

were determined on the basis of what was practical and not from

a formal sample-size requirement estimate for this study.

Whole genome sequencing

Bacterial DNA extraction was carried out as described previ-

ously.11 DNA libraries were prepared with a Nextera XT

Library Preparation Kit (Illumina, San Diego, CA, U.S.A.) and

quantified with an Agilent Bioanalyser (Agilent, Santa Clara,

CA, U.S.A.). Libraries were normalized, pooled and sequenced

as 250-bp paired-end reads with a MiSeq sequencer (Illu-

mina). The sequence data have been deposited in the Euro-

pean Nucleotide Archive under project accession PRJEB25052.

Bioinformatic analysis

Multilocus sequence types were determined from sequence

reads using SRST2.12 Single-nucleotide polymorphisms (SNPs)

were identified by mapping sequence reads to the S. aureus ref-

erence genome MSSA47613 using SMALT.14 A maximum like-

lihood phylogeny was constructed using core genome SNPs as

described.11 Isolate resistance profiles were predicted in silico

from sequence reads with SRST2 by comparison with previ-

ously compiled resistance determinant databases for 18
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antimicrobials.15,16 Core chromosomal SNPs conferring resis-

tance were identified by manual inspection of the mapping data.

Antimicrobial sensitivity testing

Antimicrobial sensitivity (AMS) testing was performed on the

VITEK 2 instrument (BioM�erieux, Marcy-l’�Etoile, France)

using AST-P634 cards following the manufacturer’s instruc-

tions. Susceptibilities to all major antibiotic classes were tested

using minimum inhibitory concentration values determined to

benzylpenicillin, oxacillin, erythromycin, clindamycin, tetracy-

cline, fusidic acid, gentamicin, ciprofloxacin, trimethoprim,

mupirocin, linezolid, daptomycin, teicoplanin, vancomycin,

chloramphenicol and rifampicin. Strains were categorized as

susceptible or resistant based on European Committee on

Antimicrobial Sensitivity Testing breakpoint cut-offs assigned

using published criteria.17

Statistical analysis

Statistical analysis was undertaken using algorithms within

Stata 14.2 (StataCorp, College Station, TX, U.S.A.). Compar-

isons of unpaired proportions were derived from a modified

v2-test using the method described by Newcombe and Alt-

man.18 To aid interpretation of the relevance, 95% confidence

intervals (CIs) for observed differences in cases compared with

controls are presented. The significance threshold for all analy-

ses was set at 0�05. Each of the comparisons was decided

beforehand; we did not statistically adjust for multiple com-

parisons. All testing was two-tailed.

Results

Genetic backgrounds of Staphylococcus aureus from

cases and controls

Ninety-nine S. aureus isolates, 50 from cases of AD and 49 from

nasal carriage controls, underwent AMS testing and whole gen-

ome sequencing. The participant demographics are summarized

in Table S1 (see Supporting Information). Genomic analysis

revealed a diverse collection, with 19 individual sequence types

(STs) from 10 clonal complexes (CCs) in cases, and 16 STs repre-

senting nine CCs in controls. Comparison of case and control iso-

lates demonstrated that they were comprised of several dominant

clones (Table 1). In cases, CC1 isolates were the single most

prevalent, accounting for 20% of samples, compared with 8% of

controls. Isolates belonging to CC30 and CC45 predominated in

controls, making up 33% and 22% of samples, respectively,

compared with 10% and 14%, respectively, in cases. Isolates

from CC7, CC9 and CC59 were identified only in cases, whereas

CC22 and CC25 isolates were present only within controls.

Distribution of antibiotic resistance phenotypes

From AMS testing, the average number of resistances per iso-

late between cases and controls did not differ significantly

between the groups, with 1�5 antibiotics per isolate in AD and

1�3 in controls. Penicillin resistance was the most common

among all isolates; 92% were resistant to this beta-lactam

antibiotic. Comparison demonstrated that penicillin resistance

was less frequent in cases than in controls, present in 86% of

AD and 98% of control isolates (95% CI for difference �22%

to 2%, P = 0�029). Prevalence of MRSA was low generally, in

4% and 2% of cases and controls, respectively (95% CI for

difference �5% to 9%, P = 0�57).
Between cases and controls there was no detectable differ-

ence in resistance to either the macrolide antibiotic ery-

thromycin or the lincosamide clindamycin, exhibited by 12%

of AD isolates compared with 6% of controls (95% CI for dif-

ference �5% to 17%, P = 0�31). Tetracycline resistance was

less frequent in cases than in controls, but this was not statisti-

cally significant (4% vs. 10%; 95% CI for difference �4% to

16%, P = 0�23). A single case sample was resistant to both

ciprofloxacin and gentamicin, while a single control was

trimethoprim resistant. None of the isolates was resistant to

vancomycin, daptomycin, linezolid, chloramphenicol, rifampi-

cin or teicoplanin (Table S1; see Supporting Information).

Resistance to fusidic acid, which is widely used topically for

superficial skin infections and in AD with topical corticos-

teroids, clearly differentiated the populations, with 24% more

AD isolates than controls exhibiting resistance (95% CI for dif-

ference 6–41%, P = 0�009). Resistance to mupirocin, used

topically and commonly for MRSA decolonization, was present

in single isolates from each group (95% CI for difference

�6% to 6%, P = 0�99).

Genetic basis of antimicrobial resistance

Whole genome sequencing of the isolates allowed us to obtain

a high-resolution view of the population structure of S. aureus

Table 1 Comparison of the clonal backgrounds of strains colonizing

either cases of atopic dermatitis (AD) or nasal carriage (NC) controls.

Singleton isolates that do not fall within a defined clonal complex are

presented as per their multilocus sequence type

Clonal complex (CC) or sequence

type (ST) of colonizing strain

Cases of

AD, n (%)

NC controls,

n (%)

CC1 10 (20) 4 (8)
CC5 6 (12) 8 (16)

CC7 3 (6) 0
CC8 7 (14) 1 (2)

CC9 3 (6) 0
CC15 3 (6) 1 (2)

CC22 0 5 (10)
CC25 0 1 (2)

CC30 5 (10) 16 (33)
CC45 7 (14) 11 (22)

CC59 3 (6) 0
CC121 1 (2) 1 (2)

ST779 1 (2) 1 (2)
ST1290 1 (2) 0
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from cases and controls, to pinpoint the genetic basis of resis-

tance and reconstruct their evolutionary context.

In silico characterization of the isolates’ resistome revealed

resistance determinants for penicillin (blaZ), methicillin (mecA),

erythromycin (ermA, ermC), tetracycline (tetK, tetM), ciprofloxacin

(mutation of gyrA, S84L, and grlA, S80F), gentamicin (aacA-phD),

trimethoprim (dfrG) and mupirocin (mutation of ileS-1, V588F)

(Table S1; see Supporting Information). The resistance pheno-

type and genotype were concordant, with four exceptions, all of

which were associated with penicillin resistance, where blaZ was

detected but the isolates were sensitive to this beta-lactam

antibiotic. Closer examination of the sequence revealed that two

isolates contained frameshift mutations within blaZ and two con-

tained frameshifts in the regulatory gene blaR (which is responsi-

ble for expression of blaZ), both of which would ablate

expression of blaZ.

Additionally we identified genes for resistance to antibiotics

not commonly used for treatment in AD, or routinely incor-

porated in AMS testing. Streptomycin resistance markers (AAD9

or aadE) were found in 12% of cases of AD vs. 6% of controls.

The amikacin resistance gene aphA-3 was detected in 4% of

S. aureus from cases compared with 2% from controls.

However, overall there were no significant differences in these

genes between the groups.

Finally, we assessed the WGS data for determinants of resis-

tance to disinfectants. In 16% of the S. aureus isolates from

cases of AD we identified qac genes, compared with 2% from

controls (95% CI for difference 3–25%, P = 0�016). These

have been associated with reduced susceptibility to antiseptics

such as chlorhexidine and benzalkonium chloride,19 which are

commonly used in dermatological practice.

Distribution of resistance genes

We examined the distribution of antibiotic resistance determi-

nants within the population framework generated from the

core-genome phylogenetic analysis (Fig. 1). The penicillin

resistance gene blaZ was present in 94% of the S. aureus from

cases and 98% from controls, reflecting the widespread distri-

bution of beta-lactamases in the S. aureus population generally.

Of three mecA-carrying isolates (two cases and one control),

two belonged to ST779 (one case and one control) and one

belonged to ST8. The ermA and ermC genes, which confer resis-

tance to both erythromycin and clindamycin, were found in

Fig 1. Resistome profile of atopic dermatitis (AD) case and control isolates. Maximum likelihood tree of 99 isolates (50 cases of AD, 49 nasal

carrier controls) built with core genome single nucleotide polymorphisms. The case status of each isolate is indicated by the coloured cell (red,

AD; blue, nasal carrier control). Coloured cells then indicate the presence of resistance determinants to the antimicrobial agents penicillin (blaZ),

erythromycin (ermA, ermC), tetracyclines (tetK, tetM), methicillin (mecA), fusidic acid (fusB and fusC, mutations in fusA), trimethoprim (dfrG),

ciprofloxacin (mutations in gyrA/grlA), aminoglycosides (gentamicin, aacA-aphD; streptomycin, AAD9, aadE, aphA-3) and antiseptics (qacA, qacC, qacG

and qacJ). Blank cells indicate that the gene or mutation is absent.
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both patient groups, with ermA being more frequent in AD

samples, as expected given its high level of carriage in CC9

isolates, a CC present only in cases.

Tetracycline resistance genes tetK and tetM were both pre-

sent in control isolates of multiple clonal backgrounds, while

tetK was sporadically present in CC8 case isolates. Both

mupirocin-resistant isolates had the same point mutation in

ileS-1, but from differing clonal backgrounds, demonstrating

that they arose independently. Finally, the qac genes are seen

scattered throughout the population in multiple genetic

backgrounds. Taken as a whole, the distribution of these

determinants varied across the population, and cases and

controls could not be segregated on the basis of their resis-

tome.

Genetic basis of fusidic acid resistance

Phenotypic analysis suggested that fusidic acid resistance

(FusR) was significantly associated with AD. Three genotypes

responsible for FusR were identified, including acquired genes

fusB and fusC and chromosomal mutations in the gene fusA.

Overall fusB was the least prevalent FusR determinant, found

in 4% of cases compared with 2% of controls (95% CI for dif-

ference �5% to 9%, P = 0�57). Carriage of fusC was detected

in 20% of cases compared with 10% of controls (95% CI for

difference �4% to 24%, P = 0�17), and predominantly in

CC1 isolates (Fig. 2). Similarly, the difference in the propor-

tion of fusC-positive CC1 isolates between cases and controls

was not significant (95% CI for difference �6% to 96%,

P = 0�12). Point mutations in fusA were fourfold higher in

cases than in controls (16% vs. 4%; 95% CI for difference

0–23%, P = 0�049). In total 12 mutations responsible for resis-

tance were identified in 10 resistant isolates, with four AD iso-

lates having multiple mutations (Table 1). Mutations in codon

461 of fusA, responsible for an amino acid substitution leucine

to serine at this position, were the most frequent (n = 4).

The phenotypic resistance observed varied depending on the

genetic determinant the isolate possessed, with the highest level

of resistance associated with fusA mutations (Table 2). High-

level resistance (minimum inhibitory concentration

> 32 lg mL�1) in fusA mutants was detected in five isolates

(four cases, one control). As shown in Figure 2, the same fusA

Fig 2. Distribution of fusidic acid resistance determinants within the population. Maximum likelihood core phylogeny of all cases of atopic

dermatitis (AD) and nasal carrier (NC) controls. The branch colouring corresponds to the clonal background of the isolates. Taxon labels are

coloured according to case status (AD case red, NC control blue). Fusidic acid sensitive isolates are labelled as coloured circles (AD case red, NC

control blue). Resistant isolates are labelled according to the genetic determinant. In isolates with multiple fusA mutations, a single mutation is

presented on the branch, corresponding to either a previously reported amino acid change conferring resistance, or the most common. Singleton

isolates fall out with a defined clonal complex and include ST779 and ST1290.
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mutations were distributed in multiple CCs, suggesting that they

evolved independently, for example the substitution L461S in

CC8 and CC30 samples. This indicates that the prevalence of

FusR was not driven by expansion of one successful clone, but

rather by development of resistance in multiple clones, on mul-

tiple occasions, suggesting that a strong selective pressure has

been exerted by fusidic acid on the population.

Discussion

The association between disease activity and S. aureus means

that antimicrobials are frequently used in patients with AD.

Increasingly it is becoming evident that there are specific lin-

eages seemingly adapted to colonizing and surviving on AD-

affected skin.20 This analysis has demonstrated differences in

genetic backgrounds of S. aureus colonizing patients with AD

compared with controls, and a marked difference in the preva-

lence of topical antimicrobial resistance determinants among

children with AD.

Antimicrobial resistance is a concern in AD, often with

specific emphasis being placed on MRSA.21–23 Our results

demonstrated that MRSA prevalence in cases and controls was

low, just 4% and 2%, respectively. This reflects the population

prevalence of MRSA in this geographical locality where previ-

ous screening found MRSA in 1�6% of children aged

< 18 years (D�esire�e Bennett, personal communication).

Intriguingly, penicillin resistance was more common in con-

trol isolates (98%, vs. 86% in cases). While this difference

appears statistically significant, we hypothesize that assessment

of a larger sample size would void this difference, as penicillin

sensitivity in S. aureus in Europe and North America reportedly

varies between 8% and 13%.24,25 Erythromycin resistance was

twice as common in cases than in controls, but numbers were

small and this difference might have been a chance finding. It

is worth noting that macrolides are the usual alternative to

first-line penicillin-based agents for penicillin-allergic individ-

uals with AD flare; it is possible that with a much larger study

this difference may have been significant.

The relevance of the significantly greater prevalence of the

qac genes in cases of AD is uncertain. However, given the

widespread use of antiseptics in dermatology, it may be func-

tionally important. The reasoning for our cautious interpreta-

tion of this finding is the lack of clear genotype–phenotype
correlation with regards to the carriage of qac genes, as well as

issues surrounding the lack of standardized testing methods

for antiseptic susceptibility.26 Nonetheless, the potential for

them to function in reducing susceptibility to antiseptic com-

pounds used in AD warrants investigation.

From our analysis of antibiotic resistances between cases and

controls, the strongest signal of antibiotic selection came from

fusidic acid. This is among the most common interventions in

AD, principally in the community in the U.K. and Ireland.

Resistance was 2�5 times more frequent in cases, and displayed

greater diversity in the genetic determinants responsible for it.

Rates of FusR in S. aureus vary depending upon country and the

patient population sampled. One European surveillance survey

showed FusR in 11�8% of isolates from the U.K., while in Ire-

land this rate was higher at 19�9%.27 This is in contrast with

the U.S.A., where fusidic acid is not routinely used, and sensi-

tivity rates of 99�6% are reported.28 Higher rates of resistance

have been shown specifically within dermatology patients,

believed to be directly influenced by usage of topical fusidic

acid preparations.29 Conversely, resistance to mupirocin,

another topical anti-staphylococcal, was low in both groups,

likely because of comparatively low usage in Ireland.

Mechanistically, fusidic acid inhibits bacterial protein syn-

thesis through binding to translation elongation factor G

(fusA), a GTPase catalysing the final stage of peptide elonga-

tion. Resistance arises either via acquisition of a plasmid-

derived determinant or through point mutations in fusA. Two

acquired genes (fusB or fusC) and six nonsynonymous substitu-

tions were identified in the isolates. Placing these in phyloge-

netic context, we estimate that FusR arose at least 18 times in

the observed population. The basis of FusR also significantly

differentiated the populations. Both plasmid-derived FusR

determinants were present twice as frequently in case isolates.

Notably, fusC was found in 20% of cases, of which 70% were

from CC1 isolates. This determinant has been reported in the

context of its distribution in successful FusR clones belonging

to CC1, both methicillin sensitive and resistant alike.30,31

While fusC prevalence seems clonally influenced, the fusA

mutations are indicative of prior exposure and adaptation to

fusidic acid therapy. Numerous fusA SNPs were identified

across the whole population (Fig. 2), demonstrating that this

was the consequence of repeated independent events. Several

case isolates had multiple mutations in fusA. Previously it has

been reported that secondary mutations in fusA provide a

potential mechanism to offset the fitness deficit incurred by

maintaining this amino acid change.32

Table 2 Fusidic acid resistance (FusR) determinants identified in case

and control isolates, and associated minimum inhibitory

concentrations (MICs)

FusR

determinant
Amino acid
substitution

Number of

isolates
(case status)

Fusidic

acid MIC
(mg mL�1)

fusA A307S,a L461S 1 (AD) 4
fusA L461S 2 (AD) 4

fusA E444K 1 (NC) 4
fusA V90I, A655Tb 1 (AD) 16

fusA A376V, P40Q,
L461S

1 (AD) > 32

fusA L461K 3 (2 AD, 1 NC) > 32
fusA T34S,a D283N,a

H457Y, P635La
1 (AD) > 32

fusB n/a 3 (2 AD, 1 NC) 8–16
fusC n/a 15 (10 AD, 5 NC) 8–16

AD, case of atopic dermatitis; NC, nasal carriage control; n/a,

not applicable. aNonsynonymous mutation without previously

published reports of impact of mutation on resistance. bMutation

at this codon previously reported but with different amino acid

substitution.36
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These observations raise several important points for clinical

consideration. Firstly, do our prescribing practices at a popula-

tion level select for specific colonizing strains in AD? Strain

prevalence in AD is an emerging area of interest, and little is

presently understood about the genetic basis of the preferen-

tial success of certain lineages, but this study supports the

recent findings of strain preponderance.20 Secondly, does

patient behaviour in addition to prescribing practice con-

tribute to the accumulation of fusA mutations in cases? Anec-

dotally, patients often report using repeated short bursts of

fusidic acid preparations at home for disease flares. Several

studies have that suggested both intermittent and prolonged

usage of such therapies is very likely to contribute to the

development of resistance.30,33 The patients with AD in this

study were attending a tertiary clinic for the first time, and

will likely have received this antibiotic in the community.

One limitation of this study was the lack of detailed prescrib-

ing records for the participants. The results nonetheless highlight

the importance of antimicrobial stewardship in this specific dis-

ease context. Finally we have to consider whether the use of any

antibiotic is warranted in many cases of AD flare. Recent clinical

trial evidence has clearly demonstrated a lack of objective benefit

of antimicrobials over use of a moderate-potency topical steroid,

at least in mild disease exacerbation.34,35

Future studies are specifically needed to assess the impact of

antimicrobial usage on S. aureus populations in AD. Topical

antimicrobials, both antibiotics and antiseptics, are of particu-

lar interest. These studies must incorporate both community-

based patients and those under specialist dermatological care,

and correlate with prescribing data. Patients of different ages

must be assessed to allow examination of the selective impact

of prescribing in dermatological and wider clinical practice.

With increasing evidence of lack of benefit of these treat-

ments, and growing resistance, we must reassess and change

our clinical practice accordingly.
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