16 research outputs found
Strengthening of short splices in RC beams using Post-Tensioned Metal Straps
This paper investigates the effectiveness of a novel and cost-effective strengthening technique using Post-Tensioned Metal Straps (PTMS) at enhancing the bond behaviour of short lap spliced steel bars in reinforced concrete (RC) beams. Twelve RC beams with a short lap splice length of 10d b (d b = bar diameter) at the midspan zone were tested in flexure to examine the bond splitting failure. The effect of confinement (no confinement, internal steel stirrups or external PTMS), bar diameter and concrete cover were examined. The results show that, whilst unconfined control beams failed prematurely due to cover splitting, the use of PTMS confinement enhanced the bond strength of the spliced bars by up to 58 % and resulted in a less brittle behaviour. Based on the test results, a new analytical model is proposed to predict the additional bond strength provided by PTMS confinement. The model should prove useful in the strengthening design of substandard lap spliced RC elements
Bond slip model in cylindrical reinforced concrete elements confined with stirrups
An analytical model able to evaluate the bond-slip law of confined reinforced concrete elements is developed and presented in this paper. The model is based on the studies developed by Tepfers and by den Uijl and Bigaj on the thick-walled cylinder model and extended to the case of the presence of transverse reinforcement. The bond strength and the considered failure modes (splitting or pull-out failure) are expressed as a function of the geometrical (concrete cover and transverse reinforcement) and mechanical (concrete strength) parameters of the element. The application of the proposed methodology allows to forecast the failure mode, and equations for the bond-slip law are finally proposed for a range of steel strain lower than the yielding one