142 research outputs found

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    Progress in particle-based multiscale and hybrid methods for flow applications

    Get PDF

    Mechanisms of CO oxidation reaction and effect of chlorine ions on the CO oxidation reaction over Pt/CeO2 and Pt/CeO2/gamma-Al2O3 catalysts

    No full text
    The reaction orders and activation energies of CO oxidation reaction over Pt/gamma-Al2O3, Pt/CeO2 and Pt/CeO2/Y-Al2O3 were investigated for stoichiometric gas mixtures. The effect of residual chlorine originating from catalyst precursors on the CO oxidation activity of Pt/gamma-Al2O3, Pt/CeO2 and Pt/CeO2/gamma-Al2O3 was also studied. Indirect evidence was collected indicating that platinum was selectively deposited on alumina surface when Pt/CeO2/gamma-Al2O3 catalyst was prepared from the physical mixture of pure oxides. The reaction orders of CO and O-2 was found approximately as -2.0 and +1.0, respectively, over the Pt/gamma-Al2O3 catalyst, but as -1.0 and 0.0 over the Pt/CeO2 and Pt/CeO2/gamma-Al2O3 catalysts. The activation energy of CO oxidation reaction over Pt/gamma-Al2O3 catalyst under stoichiometric conditions was around 120.0 kJ/mol. On the other hand, over Pt/CeO2 catalysts activation energies were measured to be around 70 kJ/mol. Surface reaction mechanisms were postulated to explain the differences in the reaction orders and activation energies

    AGEING STUDIES OF PLASMA DEPOSITED ORGANIC FILMS BY SURFACE CHEMICAL ANALYSIS (ESCA, ToF-SIMS, XAS)

    No full text
    Abstract. The formation of plasma-polymerized materials made from organic molecules is a technologically attractive way to obtain films with unique properties for life science applications. Surface properties like bio-compatibility, wettability, etc., can be adjusted by tailoring the chemical functionalization. It is well known that after deposition these films undergo post-plasma reactions, especially when they are exposed to ambient atmosphere. Most often, in applications these films are not used immediately after their deposition – they are usually stored for a certain time. Therefore there is a need for a development of analytical procedures enabling studies of ageing phenomena of plasma chemically deposited films. With the help of these studies a better understanding of basic post-plasma reaction phenomena as well as relevant empiric information for practical applications can be obtained. However, a detailed chemical characterization of plasma chemically deposited films is a great challenge for the analysts because of the co-existence of a number of different chemical species. We investigated r.f. plasma-polymerized organic films by using photoelectron spectroscopy for chemical analysis (ESCA), spectroscopy of the near edge X-ray absorption fine structures (NEXAFS) and time-of-flight secondary ion mass spectroscopy (TOF-SIMS). Ethylene, styrene, allyl alcohol and allyl amine were used as monomers. A dedicated plasma preparation chamber was designed and added to the main analysis chamber of the respective spectrometer. This approach offers the possibility to study plasma-polymerized films in situ and, subsequently, the influence of post-plasma reactions. The important effect of air exposure of the film, in terms of plasma technology denominated as “ageing”, can be studied subsequentially step by step by this unique approach
    • …
    corecore