10 research outputs found

    ASAR: visual analysis of metagenomes in R

    Get PDF
    Motivation: Functional and taxonomic analyses are critical steps in understanding interspecific interactions within microbial communities. Currently, such analyses are run separately, which complicates interpretation of results. Here we present the ASAR interactive tool for simultaneous analysis of metagenomic data in three dimensions: taxonomy, function, metagenome. Results: An interactive data analysis tool for selection, aggregation and visualization of metagenomic data is presented. Functional analysis with a SEED hierarchy and pathway diagram based on KEGG orthology based upon MG-RAST annotation results is available. Availability and implementation: Source code of the ASAR is accessible at GitHub (https://github.com/Askarbek-orakov/ASAR). Contact: [email protected] or [email protected]

    Towards the biogeography of prokaryotic genes

    Get PDF
    Funding was provided by the European Union’s Horizon 2020 Research and Innovation Programme (grant 686070: DD-DeCaF to P.B.) and Marie Skłodowska-Curie Actions (grant 713673 to A.R.d.R.), the European Research Council (ERC) MicrobioS (ERC-AdG-669830 to P.B.), JTC project jumpAR (01KI1706 to P.B.), a BMBF Grant (grant 031L0181A: LAMarCK to P.B.), the European Molecular Biology Laboratory (P.B.), the ETH and Helmut Horten Foundation (S.S.), the National Key R&D Program of China (grant 2020YFA0712403 to X.-M.Z.), (grant 61932008 to X.-M.Z.; grant 61772368 to X.-M.Z.; grant 31950410544 to L.P.C.), the Shanghai Municipal Science and Technology Major Project (grant 2018SHZDZX01 to X.-M.Z. and L.P.C.) and Zhangjiang Lab (X.-M.Z. and L.P.C.), the International Development Research Centre (grant 109304, EMBARK under the JPI AMR framework; to L.P.C.), la Caixa Foundation (grant 100010434, fellowship code LCF/BQ/DI18/11660009 to A.R.d.R.), the Severo Ochoa Program for Centres of Excellence in R&D from the Agencia Estatal de Investigación of Spain (grant SEV-2016-0672 (2017–2021) to C.P.C.), the Ministerio de Ciencia, Innovación y Universidades (grant PGC2018-098073-A-I00 MCIU/AEI/FEDER to J.H.-C. and J.G.-L.), the Innovation Fund Denmark (grant 4203-00005B, PNM), the Biotechnology and Biological Sciences research Council (BBSrC) Gut MicroInstitute Strategic Programmebes and Health BB/r012490/1 and its constituent project BBS/e/F/000Pr10355 (F.H.). R.A. is a member of the Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences.Peer reviewe

    GUNC: detection of chimerism and contamination in prokaryotic genomes

    No full text
    Abstract Genomes are critical units in microbiology, yet ascertaining quality in prokaryotic genome assemblies remains a formidable challenge. We present GUNC (the Genome UNClutterer), a tool that accurately detects and quantifies genome chimerism based on the lineage homogeneity of individual contigs using a genome’s full complement of genes. GUNC complements existing approaches by targeting previously underdetected types of contamination: we conservatively estimate that 5.7% of genomes in GenBank, 5.2% in RefSeq, and 15–30% of pre-filtered “high-quality” metagenome-assembled genomes in recent studies are undetected chimeras. GUNC provides a fast and robust tool to substantially improve prokaryotic genome quality

    proGenomes2: an improved database for accurate and consistent habitat, taxonomic and functional annotations of prokaryotic genomes

    Get PDF
    Microbiology depends on the availability of annotated microbial genomes for many applications. Comparative genomics approaches have been a major advance, but consistent and accurate annotations of genomes can be hard to obtain. In addition, newer concepts such as the pan-genome concept are still being implemented to help answer biological questions. Hence, we present proGenomes2, which provides 87 920 high-quality genomes in a user-friendly and interactive manner. Genome sequences and annotations can be retrieved individually or by taxonomic clade. Every genome in the database has been assigned to a species cluster and most genomes could be accurately assigned to one or multiple habitats. In addition, general functional annotations and specific annotations of antibiotic resistance genes and single nucleotide variants are provided. In short, proGenomes2 provides threefold more genomes, enhanced habitat annotations, updated taxonomic and functional annotation and improved linkage to the NCBI BioSample database. The database is available at http://progenomes.embl.de/.ISSN:1362-4962ISSN:0301-561

    SPIRE: a Searchable, Planetary-scale mIcrobiome REsource

    No full text
    Meta’omic data on microbial diversity and function accrue exponentially in public repositories, but derived information is often siloed according to data type, study or sampled microbial environment. Here we present SPIRE, a Searchable Planetary-scale mIcrobiome REsource that integrates various consistently processed metagenome-derived microbial data modalities across habitats, geography and phylogeny. SPIRE encompasses 99 146 metagenomic samples from 739 studies covering a wide array of microbial environments and augmented with manually-curated contextual data. Across a total metagenomic assembly of 16 Tbp, SPIRE comprises 35 billion predicted protein sequences and 1.16 million newly constructed metagenome-assembled genomes (MAGs) of medium or high quality. Beyond mapping to the high-quality genome reference provided by proGenomes3 (http://progenomes.embl.de), these novel MAGs form 92 134 novel species-level clusters, the majority of which are unclassified at species level using current tools. SPIRE enables taxonomic profiling of these species clusters via an updated, custom mOTUs database (https://motu-tool.org/) and includes several layers of functional annotation, as well as crosslinks to several (micro-)biological databases.ISSN:1362-4962ISSN:0301-561

    Drivers and Determinants of Strain Dynamics Following Faecal Microbiota Transplantation

    No full text
    Faecal microbiota transplantation (FMT) is an efficacious therapeutic intervention, but its clinical mode of action and underlying microbiome dynamics remain poorly understood. Here, we analysed the metagenomes associated with 142 FMTs, in a time series-based meta-study across five disease indications. We quantified strain-level dynamics of 1,089 microbial species based on their pangenome, complemented with 47,548 newly constructed metagenome-assembled genomes. Using subsets of procedural-, host- and microbiome-based variables, LASSO-regularised regression models accurately predicted the colonisation and resilience of donor and recipient microbes, as well as turnover of individual species. Linking this to putative ecological mechanisms, we found these sets of variables to be informative of the underlying processes that shape the post-FMT gut microbiome. Recipient factors and complementarity of donor and recipient microbiomes, encompassing entire communities to individual strains, were the main determinants of individual strain population dynamics, and mostly independent of clinical outcomes. Recipient community state and the degree of residual strain depletion provided a neutral baseline for donor strain colonisation success, in addition to inhibitive priority effects between species and conspecific strains, as well as putatively adaptive processes. Our results suggest promising tunable parameters to enhance donor flora colonisation or recipient flora displacement in clinical practice, towards the development of more targeted and personalised therapies

    A faecal microbiota signature with high specificity for pancreatic cancer

    Get PDF
    Recent evidence suggests a role for the microbiome in pancreatic ductal adenocarcinoma (PDAC) aetiology and progression. To explore the faecal and salivary microbiota as potential diagnostic biomarkers. We applied shotgun metagenomic and 16S rRNA amplicon sequencing to samples from a Spanish case-control study (n=136), including 57 cases, 50 controls, and 29 patients with chronic pancreatitis in the discovery phase, and from a German case-control study (n=76), in the validation phase. Faecal metagenomic classifiers performed much better than saliva-based classifiers and identified patients with PDAC with an accuracy of up to 0.84 area under the receiver operating characteristic curve (AUROC) based on a set of 27 microbial species, with consistent accuracy across early and late disease stages. Performance further improved to up to 0.94 AUROC when we combined our microbiome-based predictions with serum levels of carbohydrate antigen (CA) 19-9, the only current non-invasive, Food and Drug Administration approved, low specificity PDAC diagnostic biomarker. Furthermore, a microbiota-based classification model confined to PDAC-enriched species was highly disease-specific when validated against 25 publicly available metagenomic study populations for various health conditions (n=5792). Both microbiome-based models had a high prediction accuracy on a German validation population (n=76). Several faecal PDAC marker species were detectable in pancreatic tumour and non-tumour tissue using 16S rRNA sequencing and fluorescence in situ hybridisation. Taken together, our results indicate that non-invasive, robust and specific faecal microbiota-based screening for the early detection of PDAC is feasible

    Reproducibility of fluorescent expression from engineered biological constructs in E. coli

    No full text
    We present results of the first large-scale interlaboratory study carried out in synthetic biology, as part of the 2014 and 2015 International Genetically Engineered Machine (iGEM) competitions. Participants at 88 institutions around the world measured fluorescence from three engineered constitutive constructs in E. coli. Few participants were able to measure absolute fluorescence, so data was analyzed in terms of ratios. Precision was strongly related to fluorescent strength, ranging from 1.54-fold standard deviation for the ratio between strong promoters to 5.75-fold for the ratio between the strongest and weakest promoter, and while host strain did not affect expression ratios, choice of instrument did. This result shows that high quantitative precision and reproducibility of results is possible, while at the same time indicating areas needing improved laboratory practices.Peer reviewe
    corecore